

MACHINE LEARNING TECHNIQUES FOR

CHARACTERIZING IEEE 802.11b ENCRYPTED

DATA STREAMS

THESIS

Michael J. Henson, 2d Lt, USAF

AFIT/GCS/ENG/04-08

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government.

 ii

MACHINE LEARNING TECHNIQUES FOR

CHARACTERIZING IEEE 802.11b ENCRYPTED

DATA STREAMS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

 Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

 Air Education and Training Command

 In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Michael J. Henson, BS

2d Lt, USAF

March 2004

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

 iii

MACHINE LEARNING TECHNIQUES FOR

CHARACTERIZING IEEE 802.11b ENCRYPTED

DATA STREAMS

Michael J. Henson, BS
2d Lt, USAF

 Approved:

 /SIGNED/

 Major Rusty O. Baldwin, PhD (Chairman) date

 /SIGNED/

 Dr. Gilbert L. Peterson (Member) date

 /SIGNED/

 Dr. Richard A. Raines (Member) date

 iv

Acknowledgments

 First and foremost, I must thank my Heavenly Father without whom I could

achieve nothing. Next, I would like to thank my wife for her support throughout this

trying time. Without that support, I certainly would have failed at this endeavor. I would

also like to express my sincere gratitude to my advisor, Major Rusty Baldwin, for his

guidance throughout the course of this thesis effort. Another debt of gratitude is owed to

Dr. Gilbert Peterson for giving me the necessary foundation of knowledge in Artificial

Intelligence and Machine Learning techniques, a subject of which I knew nothing before

coming to AFIT. I would also like to thank Captain John Wagnon for discussing his

work and corresponding with me as to the setup of my experimental wireless network.

 Michael J. Henson

 v

Table of Contents

Acknowledgments .. v
List of Figures.. ix
List of Tables .. x
Abstract.. xi

I. Introduction ... 1

1.1 Motivation... 1

1.2 Overview... 2

1.3 Thesis Organization .. 4

II. Literature Review.. 5

2.1 Background... 5

2.2 Current Related Research ... 6

2.3 Data Analysis Techniques... 11

2.3.1 Statistical Pattern Recognition .. 11
2.3.2 Artificial Neural Networks .. 15
2.3.3 Decision Trees .. 18
2.3.4 Discovery of Frequent Episodes in Event Sequences 21
2.3.5 Hidden Markov Models... 26

2.4 Summary ... 29

III. Methodology... 30

3.1 Background... 30

3.2 Problem Definition.. 30

3.2.1 Goals and Hypothesis ... 30
3.2.2 Approach... 31

3.3 System Boundaries.. 31

3.4 System Services ... 33

3.5 Performance Metrics... 33

 vi

3.6 Parameters... 34

3.6.1 System ... 34
3.6.2 Workload... 35

3.7 Factors... 35

3.8 Evaluation Technique .. 36

3.9 Workload... 36

3.10 Experimental Design... 37

3.11 Analyze and Interpret Results... 39

3.12 Summary ... 39

IV. Analysis and Findings .. 41

4.1 802.11b Ad-Hoc Network Topology .. 41

4.2 Collected Data... 42

4.3 Data Preparation.. 45

4.4 Neural Network Configuration ... 47

4.5 Neural Network Results.. 49

4.6 Decision Tree Configuration... 55

4.6 Decision Tree Results ... 59

4.7 Comparative Analysis... 61

4.8 Analysis of Variance... 62

4.9 Summary ... 63

V. Conclusions and Recommendations .. 64

5.1 Problem Summary .. 64

5.2 Findings... 64

5.3 Limitations .. 65

 vii

5.4 Recommendations for Future Research .. 66

Appendix A... 68
Appendix B ... 76
References... 77

 viii

List of Figures

 Figure Page

 1-1. Wireless Ad-Hoc Network ..2

 2-1. Format of the IP Header ..7

 2-2. Histogram of HTML page sizes served by U.C. Berkeley Web Site8

 2-3. “Signature” of SSH Password Prompt Entry...9

 2-4. Model for Statistical Pattern Recognition ...12

 2-5. Typical Neural Network Architecture ...16

 2-6. Outcome Variable for Outlook Example...20

 2-7. Example Sequence of Events ..22

 2-8. Example Sequence with Two Windows of Width 5..23

 2-9. Episodes α, β, and γ ...23

2-10. Frequent Episodes as a Function of Window Width ...25

2-11. One Coin Hidden Markov Model Example...27

3-1. Application Determination System ...32

4-1. Neural Network with Desired Output for Email Sample46

4-2. Sample ARFF File ...47

 4-3. Portion of J48 Induced Decision Tree ...59

 ix

List of Tables

 Table Page

 2-1. Error Estimation Methods ...14

 2-2. Weather Data ...19

 2-3. Experiments with Various Data Sets ...25

 3-1. System Parameters for ADS..34

 3-2. Factors Varied..36

 4-1. Combinations of Data Collected..42

 4-2. Unique Sizes for Unencrypted vs. Encrypted E-Mail44

4-3. Sample Confusion Matrix..50

4-4. Node Output for Email-Http Sample...50

4-5. Neural Network Performance for Window = 11 ...51

4-6. Averages for All Replications of Neural Network Performance.......................52

4-7. Averages for Single Application Neural Network Performance53

4-8. Packet Sizes by Application ..54

4-9. Outcome Variable for Outlook ..56

4-10. Classification Percentages for All Decision Tree Experiments.........................60

 x

AFIT/GCS/ENG/04-03

Abstract

 As wireless networks become an increasingly common part of the infrastructure

in industrialized nations, the vulnerabilities of this technology need to be evaluated. Even

though there have been major advancements in encryption technology, security protocols

and packet header obfuscation techniques, other distinguishing characteristics do exist in

wireless network traffic. These characteristics include packet size, signal strength,

channel utilization and others. Using these characteristics, windows of size 11, 31, and

51 packets are collected and machine learning (ML) techniques are trained to classify

applications accessing the 802.11b wireless channel. The four applications used for this

study included E-Mail, FTP, HTTP, and Print. Using neural networks and decision trees,

the overall success (correct identification of applications) of the ML systems ranged from

a low average of 65.8% for neural networks to a high of 85.9% for decision trees. These

averages are a result of all classification attempts including the case where only one

application is accessing the medium and also the unique combinations of two and three

different applications.

 xi

MACHINE LEARNING TECHNIQUES FOR

CHARACTERIZING 802.11B ENCRYPTED DATA

STREAMS

I. Introduction

1.1 Motivation

 As wireless networks become an increasingly common part of the infrastructure

in industrialized nations, the capabilities of this technology needs evaluation. Due to the

inherent mobility of these networks, they have been implemented in many tactically

mobile sectors such as the medical community and the military [JVZ01]. These areas

often require more secure communications than other users of this technology due to the

sensitive nature of the missions. Wireless networks are unique; the transmission channel

is not secure. Also, wireless networks typically have lower data rates and higher error

rates than a wired network. The broadcast nature of wireless networks means they are

much simpler targets for information warfare attacks such as jamming, interjection of

spurious traffic, and traffic analysis [Gei02].

 Most traffic analysis attacks rely on header information such as the sender and

receiver IP addresses and protocol in use to gain information about a network [ChA99].

Several methods of restricting access to headers have been proposed [FKK96], [GFX01],

[GLX99], [JVZ01], [WoV91]. However, there is other information available in wireless

packets to would be attackers. This information includes packet size, channel utilization,

signal strength, and packet inter-arrival times. For groups implementing wireless

 1

networks (especially the military), an analysis of the ability to exploit these other

characteristics is clearly important. Such an analysis has implications for both offensive

and defensive information attack.

1.2 Overview

 The IEEE 802.11b [P802.11] protocol is the most common wireless network used

today [And98]. This protocol uses the 2.4 GHz industrial, scientific and medical (ISM)

band and a direct sequence spread spectrum modulation scheme. The 802.11 protocol

supports data rates ranging from 1 to 54 Mbps with the 802.11b specification supporting

1, 2, 5.5 and 11 Mbps. There are two operating modes for 802.11b networks:

infrastructure and ad-hoc. In infrastructure mode, wireless nodes are connected to an

existing wired network through a wireless access point. In ad-hoc mode, nodes in the

network communicate directly to each other without the use of any traditional wired

network. By definition, this type of network must include at least two computers. An

example of this is shown below in Figure 1-1. This is the type of network considered in

Figure 1-1 802.11b Wireless Ad-Hoc Network

 2

this research. The 802.11b wireless networks are generally capable of two different

encryption and authentication schemes. The first type of encryption known as Wired

Equivalent Privacy (WEP), uses a shared secret key to both encrypt and decrypt

messages. This key must be configured on all the wireless clients attempting to

communicate in the wireless network and is usually between 40 and 152 bits in size

depending on the vendor. A 40-bit key is specified in the 802.11b standard. Although

WEP is known to be vulnerable to various attacks, other standards for wireless encryption

are under development. IEEE 802.11i specifies certain improvements to wireless

networking security. While this standard is being developed, wireless vendors have

agreed upon an interoperable interim standard known as Wi-Fi Protected Access (WPA)

[Gri02]. WPA replaces WEP’s weaker encryption algorithm with the Temporal Key

Integrity Protocol (TKIP). Unlike WEP, TKIP provides a unique starting key for each

authentication and also synchronized changing of the encryption key for each frame.

 The trend of moving toward tougher encryption standards is sure to continue as

wireless networks begin to carry the same sensitive data as wired networks. It is this

trend and the trend of obscuring header information that drives the need for other analysis

techniques for wireless transmissions.

 Research has shown that attributes other than the packet headers provide valuable

information about the nature of transmissions on a wireless network [Bel97], [ChA99].

Information such as packet size can be captured easily due to the broadcast nature of the

wireless medium and used in inferring information about the nature of the transmissions.

There are techniques that could hide such information like traffic padding, changing the

maximum transfer unit (MTU) size, and making all packets the same size, but these

 3

techniques all require significant overhead and cause a reduction in useful throughput

[KeA98]. It is the combination of negative bandwidth implications and the failure to

appreciate the rich information to be gained from packet analysis that makes the use of

such techniques to defeat that analysis unlikely [JVZ01], [KeA98].

 The goal of this research is to develop an automated algorithm to characterize

wireless traffic. More specifically, this algorithm will identify what applications are

accessing the wireless channel. In order to automate such a system, machine learning

(ML) techniques are used. Machine learning deduces patterns, regularities or rules from

past “experiences” or samples. Neural networks and decision trees are used to infer

information from 802.11b packet attributes without examining the data contained in the

packets themselves which are assumed encrypted. Taking some of the unique attributes

described above as input, these techniques will classify wireless transmissions into

applications that are accessing the channel.

1.3 Thesis Organization

 This chapter presents the motivation for the research and an overview of the

concepts involved. Chapter II provides background in the area of traffic analysis

techniques, and further discusses different methods of automatic data classification and

machine learning. Chapter III discusses the methodology used in this research. System

boundaries, parameters, workloads, and factors to be varied in the research are explained.

Chapter IV contains the data collected and results of analysis techniques performed as

well as an analysis of the variance of the data. Finally, Chapter V presents conclusions,

limitations, and suggestions for future research in this area.

 4

II. Literature Review

2.1 Background

 Whether discussing voice communications or packet information on a network,

obtaining the source information has always been more difficult than obtaining meta

information, or information about things such as routing and timing characteristics. For

example, wiretaps are so expensive to implement, and require such a high level of

evidence to be presented to a judge before being authorized; police use them only as a

tool of last resort. In contrast, the phone numbers a suspect calls, and the numbers of

those who call him provide valuable information. The police use this meta data to infer

information about the suspect and those he contacts. In 1998, there were 1,329 full

wiretap applications approved, while there were 4,886 warrants for pen registers (devices

that record all the numbers dialed from a particular phone line) and 2,437 warrants for

trap-and-trace devices (which record the calling-line phone number of incoming calls)

[And01]. This means that there were approximately 11 times as many warrants for

communications data as there were for actual content.

 Disregarding the legal issues of reading the contents of packets on a network,

there are still the technical problems. It is fairly difficult to examine high data rate

packets even when they are not encrypted. Add to this the trend towards tougher

encryption standards for wireless traffic, especially since the relaxation of the US

encryption export rules in 1999, and it becomes much more difficult to decrypt these

packets and will probably soon require an inordinate amount of time and resources

[GFX01]. For this reason, other methods for analyzing traffic are needed. Many

intrusion detection systems use unencrypted header information to create classification

 5

rules for attacks [Mar01]. However, there has been recent work on hiding this

information for both wired and wireless networks including IPsec, Onion Routing, the

Non-Disclosure Method (NDM), and the Dynamic Mix Method for Wireless Ad Hoc

Networks [KeA98], [RSG98], [FKK96], [JVZ01]. In light of this, this research assumes

that all packets have both the contents and the header information encrypted.

 The following sections contain an in depth review of techniques used to monitor

and characterize network traffic as well as techniques to characterize and classify

information in general.

2.2 Current Related Research

 There are many papers and articles on traffic analysis techniques. Many of these

use routing information from packet headers [FKK96], [GFX01], [GLX99]. There are

also a number of papers dealing with the prevention of traffic analysis [JVZ01],

[WoV91], [WoV93]. Most prevention techniques aim to hide source and destination

node information. There are several interesting research efforts that deal with other

aspects of traffic analysis and data characterization that provide support and motivation

for this study. These include a probability based attack on encrypted IP headers, a

signature based attack for analysis of SSL encrypted web browsing, and a timing analysis

attack on SSH [Bel97], [ChA99], [SWT01].

 A probability based attack on encrypted IP headers is more effective if traffic

analysis is done first. Different protocols and applications have their own characteristic

traffic patterns or signatures. For example, SMTP has a series of short data packet

exchanges between the two nodes, followed by a longer message from the client, and

another set of brief exchanges. HTTP exchanges consist of a few hundred bytes sent in

 6

one direction, followed by at least several hundred bytes in the other direction [Bel97].

By identifying the type of protocol in use, more information is available about the

probable contents of the headers. The format of the IP header is shown below in Figure

2-1. The idea is that certain areas in an IP header can be predicted even though

Figure 2-1 Format of the IP Header

encrypted. For example, the version number value is always 416 (representing IP version

4); the header length is very often 516 (which shows that there are 5 32 bit words or 20

bytes in the header), and the type of service field value is very often 1016 [Bel97]. This

reveals useful information to use in conjunction with various cryptanalysis techniques

and software. If padding is not used, the length attribute can be determined for certain

packets based on traffic analysis of the actual packet size. Even in the presence of traffic

padding, analyzing the distribution of lengths should yield information since the relative

number of certain packets in traffic have been analyzed [Bel97]. For example, ACK

packets are known to represent about 30 to 40 percent of those on the Internet and these

have a length of 2816 (40 bytes).

 The next area of related research is the traffic analysis of secure sockets layer

(SSL) encrypted web browsing. The SSL protocol is an application layer mechanism

widely used for encrypted Web browsing. However, SSL was not designed with traffic

analysis in mind. One approach used to analyze SSL traffic uses the sizes of known Web

 7

pages and identifies when those pages are downloaded by a user [ChA99]. Since HTML

files can be of arbitrary length, the sizes of particular web pages are often unique among

files at a site. Figure 2-2 below shows the size of Web pages served by the U.C.

Figure 2-2 Histogram of HTML page sizes served by U.C. Berkeley Web Site

Berkeley Extension Web site. Out of the approximately 500 pages on the site, only about

ten percent are not unique.

To understand how this particular form of traffic analysis attack is performed, a

thorough understanding of the protocols used for Web browsing is needed. HTTP, for

example, has a simple procedure for downloading Web pages. First, the client browser

sends a request for a page. The server responds with a stream of IP packets containing

the HTML code for the page. This code contains references to other embedded objects,

such as images, which the browser must also fetch from the server. After receiving and

 8

£.5

ID

+>

K5

^o^ «► ^

ooas^MMi <&etoiso o

0,5

0
160

...I ...I

1000 10000
File Size

100000

 parsing the HTML, the browser issues requests for all of the embedded objects. The

characteristics of the protocol are used to create a database with size information for

various encrypted and unencrypted Web pages taken from captured traffic. It is

interesting to note that the only difference between encrypted and unencrypted sizes is

that the encrypted files are a constant byte amount larger than the unencrypted ones

[ChA99]. This suggests that a hidden Markov model (HMM) with pages visited

corresponding to hidden states and the hyperlinks to state transitions would work well.

HMMs are discussed in Section 2.3.

In what is perhaps the most novel of these related analysis techniques, timing

analysis attacks performed on packets from an interactive Secure Shell (SSH) session

revealed inter-keystroke timings [SWT01]. Traffic analysis reveals the exact timing of

the transmission of the password since every keystroke is sent in a separate packet.

Knowledge of the SSH password protocol allows a recognizable “signature” to be created

to indicate when passwords are about to be entered. The signature consists of three

twenty byte packets sent for the password request, followed by an echo of two twenty

byte packets from the remote host and a twenty-eight byte packet for the “password:”

prompt as shown in Figure 2-3. The local machine sends each character of the password

Figure 2-3 “Signature” of SSH Password Prompt Entry

 9

in twenty byte packets until it either successfully logs into the local host or fails indicated

by other size packets from the host.

 A hidden Markov model is used to model the behavior of the inter-keystroke

timings. In this example, the pair of keys is considered the hidden state, and the inter-

keystroke timing the observable output. Using this approach, only 1/50th the number of

guesses were required to identify the correct password compared to a brute force search.

This represents a gain of 5.7 bits of information per password guessed using the latency

information [SWT01]. Thus, information other than that available in packet headers can

assist in inferring important characteristics about network traffic.

 Although these traffic analysis techniques are promising note that there are also

numerous papers and articles revealing methods for preventing this type of analysis.

Many of these traffic analysis prevention techniques involve the information assumed to

be unavailable in the context of this effort, namely the packet header routing information.

Techniques used to hide this information include link encryption and the insertion of

dummy traffic into the network (traffic padding) [GLX99], [JVZ01]. Another technique

used to defeat traffic analysis is to force all the packets in a given network to be a certain

size. This can also happen as a result of fragmentation due to underlying networks’

maximum transfer units (MTU) [Mar01]. Forcing constant packet sizes results in a

reduction in useful bandwidth since many packets have useless padding material

[WoV91]. To defend against timing attacks, round trip times (RTT) could be padded,

increasing all RTTs to worst case round-trip times. Of course, this is also a major

inconvenience for users. Given these inconveniences, and more importantly, worst-case

delay requirements for some systems, it is questionable whether networks system

 10

administrators will employ methods to defeat all traffic analysis techniques [GFX01].

Before any serious traffic analysis can be performed, a decision has to be made about

how to collect and analyze the data. The next section covers several different methods

for data analysis that have been applied to network traffic information in various ways.

2.3 Data Analysis Techniques

 There are many interesting characteristics that can be captured and analyzed in

networks. Some of these include source and destination addresses, source and destination

port numbers, packet size, packet inter-arrival times, channel utilization, and signal

strength in wireless traffic. Techniques used to analyze this data range from simple

empirical observation to complex models which infer information from the traffic stream

using machine learning. Statistics involves fitting models to data and making inferences

from those models [Mar01]. Since this coincides well with the objective in this research,

several of these statistical methods are described below.

 2.3.1 Statistical Pattern Recognition

 Pattern recognition is one subset of the larger class of data mining techniques. In

general, data mining is performed on much larger sets of data than pattern recognition.

The automatic recognition and classification of patterns by machines represent statistical

pattern recognition [JDM00]. The targets of pattern recognition techniques include

fingerprints, handwritten letters and words, the human face, speech signals, and network

information among others. In pattern recognition, there are two major approaches:

supervised and unsupervised learning [HTF01]. So called supervised learning gains its

name from the presence of an outcome variable to guide the learning process of the

model. For example, an outcome measurement could be heart attack versus no heart

 11

attack or something more complex like different categories of network traffic.

Unsupervised learning examines data without any knowledge of the outcome and

characterizes it based on how it is organized or clustered. Sometimes it is useful to use

both techniques. The unsupervised technique might be used to determine unique

characteristics in network traffic that could be used for inferring useful data. Evaluation

of the resulting categories or clusters of data found could be used to train a model in a

supervised way by deciding on certain outcome variables that can be determined.

 The design of a pattern recognition system generally includes the following three

aspects: 1) data acquisition and preprocessing, 2) data representation, and 3) decision

making [JDM00]. One of the simplest techniques in pattern recognition, template

matching compares a captured sample against templates or prototypes stored in a

database. Quite often, templates are learned from a training set of data. If a relatively

small number of parameters are observed in network traffic, this method may prove to be

an accurate way to infer important characteristics.

 More formally, a pattern recognition system operates in two modes that include

training or learning mode and classification or testing mode as seen in Figure 2-4. The

Test Feature Preprocessing Classification
Pattern Measurement

Figure 2-4 Model for Statistical Pattern Recognition

Classification

Training

Training Feature
Extraction

Preprocessing
Pattern

Learning

 12

role of preprocessing is to separate interesting features of the data from those that are not

statistically interesting. The user can intervene by examining these interesting features

and selecting those appropriate for extraction. Next, the system is trained to separate the

feature space according to the selected features. Classification mode works in a similar

fashion by separating the feature space and assigning the results to specific categories

learned in the training process.

 Perhaps one of the most important aspects of pattern recognition is the error

estimation of the classifications. This is especially true in the design phase of the pattern

recognition model where different classifiers and combinations thereof can be selected

from among the available features. The error rate of a recognition system can be

estimated by using the percentage of misclassifications of the test data. The training and

test sets need to be sufficiently large and independent in order for this estimation to be

reliable in predicting future classification performance. The following example attributed

to [JDM00] helps to clarify this idea. Given a classifier, suppose that τ is the number of

samples out of a total of n that are misclassified. It can be shown that the probability

density function of τ fits a binomial distribution. It follows that the maximum likelihood

estimate, is given by τ/n, with E()eP̂ eP̂ = eP and Var() = (1-)/n. This shows that eP̂ eP eP

eP̂ is an unbiased estimator and a confidence interval can be calculated. For example, if n

= 250 and τ = 50, then is 0.2 and the 95% confidence interval for eP̂ eP̂ would be (0.15,

0.25). Given two classifiers, if the mean of either is included in the others’ confidence

interval, their performance is statistically equivalent. Since a larger n reduces the

confidence interval, a large sample is desirable. However, one has to consider the

partitioning of the total set of available data as well. In other words, using too few

 13

training examples so that more can be used for testing to decrease the confidence interval

will likely lead to higher error levels. Some method for determining the ratio of training

sets to test sets must be determined. Table 2-1 discusses some possibilities. If the

amount of data used for training is too small, the classification technique will have poor

generalization ability. This is an intuitive result especially if the samples used for

training do not represent all of the class possibilities. On the other hand, using too much

Table 2-1 Error Estimation Methods

Method Property Comments
Resubstitution Method All the available data is used

for training and test sets are
the same.

Optimistically biased estimate,
especially when the ratio of
sample size to dimensionality
is small.

Holdout Method Half the data is used for
training and the remaining
data is used for testing;
training and test sets are
independent.

Pessimistically biased
estimate; different partitioning
will give different estimates.

Leave-one-out Method A classifier is designed using
(n-1) samples and evaluated
on the one remaining sample;
this is repeated n times with
different training sets of size
(n-1).

Estimate is unbiased but it has
a large variance; large
computational requirement
because n different classifiers
have to be designed.

Rotation Method, n-fold cross
validation

A compromise between
holdout and leave-one-out
methods; divide the available
samples into P disjoint
subsets, 1 ≤ P ≤ n. Use (P-1)
subsets for training and the
remaining subset for test.

Estimate has lower bias than
the holdout method and is
cheaper to implement than the
leave-one-out method.

Bootstrap Method Generate many bootstrap
sample sets of size n by
sampling with replacement.

Bootstrap estimates can have
lower variance than the leave-
one-out method;
computationally more
demanding; useful in small
sample size situations.

data to train and only a small amount to test may lead to an inaccurate estimated error

rate. Deciding which method to use is more of an art than a science and may require

 14

experimentation with the collected data [JDM00]. If a large number of data sets are

available, all of the techniques described above are likely to approach the same error

estimations.

Statistical pattern recognition works very well especially when the feature space

(d) is small compared to the number of training samples. This is known as the peaking

phenomenon [JaC87]. One problem with statistical pattern recognition is determining the

period to be examined. In other words, what amount of time is one sample for the

purposes of training and testing? In order to answer that question, a thorough

understanding of the data to be used and the problem being solved is required. Consider

Internet traffic for example. Making the decision of how many packets to use for one

sample depends on the purpose or goal of the classification. Once the goal of the

classification attempt is understood, the salient features can be analyzed. Those features

that yield the most information toward the goal of the classification would be used for

training. Examining the Internet traffic, it can be determined how often the classifying

characteristics appear. This information is then used to determine an appropriate size for

the samples. Another closely related and popular machine learning technique used for

classification is artificial neural networks (ANN).

 2.3.2 Artificial Neural Networks

 Neural networks fall into the artificial intelligence (AI) and machine learning

categories. Neural networks are learning and classification structures modeled after the

human mind. As such, they are composed of small components or neurons which accept

an input, make a decision on that input, and forward an appropriate response. These

neurons function together to process information in a parallel fashion. The neurons of an

 15

ANN are connected by weighted links over which signals can pass and it is in these links

that the actual learning and intelligence of the ANN resides. There are different

configurations of connections for these links but one common one, the feed forward

network, is shown in Figure 2-5. Signals are presented to the network at the input layer.

In a typical network, the input neurons do little but forward the incoming signals.

Changing these signals from input to an output response is the job of the transfer function

 Input Signals

 Input Layer

Hidden
Layer

Output Layer

Output Response

Figure 2-5 Typical Neural Network Architecture

which operates in three steps. In the first step, the neuron computes the net weighted

input it received from its input connections. This can be done in different ways but a

common formula is

 Ii = ∑ (2.1)
=

n

j
jij xw

1

 where Ii is the net weight of the inputs received at neuron i from the n nodes in the

network, is the weight from neuron j to neuron i, and is the output from neuron j.

In other words, each neuron receives input from every neuron in the layer before it and

ijw jx

 16

these inputs are summed together after being multiplied by the weight of the

corresponding connection. Weights can be negative and therefore inhibitory in nature or

positive and excitatory. During the second step, the transfer function converts Ii to an

activation level. There are several different functions for doing this, but one commonly

used function is that of a sigmoid or S-shaped curve. A common formula used for this is

 f(I) = Ie−+1
1 (2.2)

which effectively maps the signal to something between 0 and 1. The third step for

transferring the signal takes this function output and compares it to a global threshold

value. If the value exceeds the threshold, a common practice is to simply forward the

value itself although any new value could be used while a 0 is forwarded if the threshold

is not surpassed. In this way, a signal propagates through the neural network and is

transformed to an output signal.

 The way a neural network “learns” its classification behavior is through

modification of the weights on the connections. There are many different learning

algorithms that can be implemented within the neural network, but the most common one

is backpropagation. All of these algorithms work by updating the weights on the

connections between neurons according to the amount of error calculated by taking the

difference between the actual output of the system and the correct output.

 Neural networks have been applied successfully to a wide range of data mining,

prediction, and classification problems including hand writing or optical character

recognition, speech recognition, stock market forecasting and many others. Neural

Networks are appealing because the restricted hypothesis space bias or constraints on the

hypotheses that an algorithm is able to construct, is well suited for sequential and

 17

temporal prediction or classification tasks [CrS97].

 On the negative side, neural networks suffer from the fact that the reasoning

behind their results is often difficult to understand or explain. This problem is often

referred to as the “black box” effect of neural networks and limits their use in some areas

where information about how classifications or decisions are being made is as important

as the decisions themselves. A data mining technique which does not suffer from the

black box effect is that of decision trees.

 2.3.3 Decision Trees

 Decision trees are often used in data mining for prediction and classification

purposes. One of the most powerful characteristics of decision trees is the simple model

structure they have. It is a straight-forward matter to transform a decision tree into a set

of logical “if-then” rules.

 Decision trees are produced in a recursive manner by selecting an attribute to split

on and placing it at the root node. One branch is created for each possible value. If the

data is discrete, the number of branches is equal to the number of categories for that

attribute whereas continuous numerical data is normally split in a binary fashion with one

branch being less than and the other greater than or equal to the chosen split. In order to

determine which attribute from a set to split on, decision trees make use of different

measures of node purity. Node purity has several factors associated with it. First, the

major goal of node purity is to have only one of the classes of the decision tree model

represented. In other words, if the classes were yes and no, a node with all no instances

is pure. This purity could be achieved simply by partitioning the samples so that there

was one node for each. This would quickly lead to large decision trees for anything other

 18

than a trivial case. To achieve models which make correct classifications while

maintaining more reasonable decision tree sizes requires that the test for purity also favor

those nodes which are not only pure but also have more members. There are different

measures of purity in use today, but one of the most common ones is called the

information of the node and is measured in bits. This measure of purity will be explained

with the introduction of a simple decision tree example from [Qui86].

 Table 2-2 below summarizes the weather data used for this example. The class

Table 2-2 Weather Data

Outlook Temperature Humidity Windy Play

sunny hot high false no
sunny hot high true no

overcast hot high false yes
rainy mild high false yes
rainy cool normal false yes
rainy cool normal true no

overcast cool normal true yes
sunny mild high false no
sunny cool normal false yes
rainy mild normal false yes
sunny mild normal true yes

overcast mild high true yes

being determined is whether or not a game is played given certain conditions. To

determine the information gain from splitting on the categories, the purity of each split is

tested by arranging the outcome variable within each category as shown in Figure 2-6.

The numbers of yes versus no for the classes of outlook are then [2, 3], [3, 0], and [3, 1]

respectively and the information values of these nodes are determined by a calculation of

the nodes’ entropy as seen by the samples. Entropy is defined as

 entropy (p1,p2,…,pn) = -p1logp1-p2logp2…-pnlogpn (2.3)

 19

where (p1,p2,…,pn) are the fractions of the values at the leaf nodes of a particular split.

Outlook

Yes Yes Yes
Yes Yes Yes
No Yes Yes
No No
No

 Sunny Overcast Rainy

Figure 2-6 Outcome Variable For Outlook

These fractions always sum to 1. Since the logarithms used in equation (2.3) are base 2,

the entropy values will always be between 0 and 1. The negative coefficient in front of

each logarithm is required to get a positive value for the entropy since the log of a

fraction is negative. Using (2.3) we have

entropy ((2/5), (3/5)) = 0.971 (2.4)

 entropy ((3/3), (0/3)) = 0.0 (2.5)

 entropy ((3/4), (1/4)) = 0.811 (2.6)

The next step is to find an average information value for this particular split. This is done

by multiplying the entropy for a particular branch by the fraction of total samples

contained by it which gives

 (5/12) * 0.971 + (3/12) * 0 + (4/12) * 0.811= 0.675 (2.7)

This result means that 0.675 bits of information are needed to classify a new example

according to the outlook variable. The original unsplit yes and no data contained eight

 20

yes and four no nodes corresponding to an entropy of 0.918 bits using equation (2.6). By

splitting the data on the outlook variable, and simply subtracting the 0.675 bits from the

original 0.918 we see that uncertainty is reduced by 0.243 bits. This is the information

gain from splitting on the outlook attribute. This same procedure is carried out for each

of the remaining splits (temperature, humidity, windy) and the one that has the best

information gain (i.e., least uncertainty) is selected. The procedure repeats with the

remaining factors until no more splits can be made. If the data presented for the decision

tree model was ideal, leaf nodes would have entropy of 0 meaning that there was only

one possible classification for any sample reaching that node. Of course, this rarely

occurs with real data sets. Decision trees are a greedy divide and conquer approach to

data mining and classification and have been made more popular in the past two decades

by the proliferation of decision tree programs with good performance.

 2.3.4 Discovery of Frequent Episodes in Event Sequences

 Many data mining and machine learning techniques are used to discover

correlations in unordered collections of data [MTV97]. In many situations, there is order

to the data being examined in the form of sequences of events. Certainly, packets in a

network may be viewed in this way. This is especially easy to recognize at lower channel

utilization levels where a stream of packets in the network represents only a few

exchanges between users and hosts. The sequence of events still holds true even for fully

utilized channels, but recognizing those sequences is more difficult.

 The following example, modified to be more appropriate to this work, is due to

[MTV97]. Suppose that the initial handshaking of a protocol makes up events A and B,

the data that follows makes up event C, D, and the end of the transfer makes up E and F.

 21

 Examining a stream of data could yield a sequence such as shown in Figure 2-7. What is

E D F A B C E F C D B A C E F C B E A E C F A

 Time

Figure 2-7 Example Sequence of Events

required is a way to examine this sequence of events and determine if there are any

frequent episodes (collections of events occurring frequently together). In this example,

the events correspond to particular signatures for known network events. However, the

events could conceivably correspond to anything as long as they yield interesting or

useful information about the data. From the above sample, we could make several

inferences. For example, the E and F events occur several times together. Also, it can be

observed that whenever A and B occur (in no particular order), C soon follows. It is

obvious that some consideration must be given to the period or event window considered

when discovering these frequent episodes.

 The input is considered as a sequence of events where each has an associated time

of occurrence. Given a set of X event types, where an event is a pair (A,t) and A is the

type (A, B, C, etc.) and t is an integer representing the occurrence time of the event. An

event sequence s on X is a triple (s,Ts,Te), where s =),(,),,(),,(2211 nn tAtAtA K is an

ordered sequence of events [MTV97] and Ts and Te are integers, Ts < Te, where Ts is the

starting time and Te is the ending time for the sequence. Applying this formalism to the

example sequence above results in Figure 2-8. In this figure, the event sequence

s =)58,(,),32,(),31,(ADE K is represented graphically. For each event occurring in

the time interval [30, 58), the event type and time of occurrence have been recorded. At

this point, the periodicity or length of window is considered. Of interest are all frequent

 22

episodes in a given sequence. In order to be interesting, episodes must occur close

E D F A B C E F C D B A C B E A E C F A

 WINDOW 1 Time

 WINDOW 2

30 35 40 45 50 55

Figure 2-8 Example Sequence with Two Windows of Width 5

enough together in relation to time to yield useful information about the events. This

choice is arbitrary, and will require experimentation with the actual data sets before

choices yielding useful information can be made. In Figure 2-8, the time chosen (known

as the window width) is 5. One way to proceed in this type of experimentation is to start

with very small window widths, where it is unlikely many episodes will be found,

increasing the size until the number of episodes becomes too large to yield any useful

results. This provides a good upper and lower bound for useful window definitions.

Note that the windows overlap since dividing the sequence into non-overlapping sub-

sequences could cause lead to missing important episodes. Another parameter that can be

varied to achieve different results is the number of windows an episode must occur in

before being considered frequent. Episodes are partially ordered collections of events

occurring together and can be described as directed acyclic graphs. Consider episodes α,

β, and γ in Figure 2-9. Episode α is a serial episode in which event E occurs first,

followed by event F with other events possibly occurring in between. This is important

A A E F
C

α

 B B

β γ

Figure 2-9 Episodes α, β, and γ

 23

especially when considering the multi-access nature of networking. Episode β is a

concurrent episode with no constraints on the order of A and B. Event A could have

preceded B or B could have preceded A. Episode γ is a combination of the others where

A and B occur in some order before C. There are definite parallels to this type of “rule”

in the arena of intrusion detection systems where known attack signatures occur in a

certain order.

 Serial episode candidates can be recognized by using state automata that accept

them and ignore all other input. Any number of automatons for the same episode can

exist at the same time. The basic idea is each time the first event of an episode comes

into the current window, a new automaton is initialized. When that event leaves the

current window, the automaton is removed. In this way, the automata can keep track of

what may be different episodes reaching different levels of completion. This will be

conducive to discovering multiple similar events in a stream of packet data.

 Keeping an array, for example α.initialized[i], for each automaton with values of

initialization times for individual instances will allow the removal of the automata at the

proper time. Further, a list (waits(A)) of automata waiting to reach their next states is

kept. A number of algorithms have been developed for the discovery of episodes and

frequent episodes in data [MTV97].

 Experiments performed on sequences residing in flat text files representing a

telecommunication network fault management database with 73679 alarms over 7 weeks

showed greatly varying numbers of frequent episodes resulting from changing the

frequency threshold from 0.001 to 0.100 [MTV97]. However, the number of frequent

episodes increased as a function of the window width as can be seen in Figure 2-10. In

 24

0
100
200
300
400
500
600
700

0 50 100 150

Window Width

Ep
is

od
es

Figure 2-10 Frequent Episodes as a Function of Window Width

addition to the experiments on the alarm database, others were run on a variety of

different data to show the methods general applicability. These other data sets are shown

in Table 2-3. The WWW row in the table corresponds to part of the server log from the

Department of Computer Science at the University of Helsinki. The researchers

considered the page fetched as the event type. The slower input rate of users in the

WWW row as compared with the alarm data in the telecommunications experiment

Table 2-3 Experiments with Various Data Sets

Data Set Events Event Type Time Win. Threshold Freq. Epis. Rules

Alarms 73679 287 60 0.8 826 6303
WWW 116308 7634 120 0.2 454 316
text 5417 1102 20 0.2 127 19
protein 4941 22 10 21234

required a doubling of the window time as shown in the data above. However, it is

appropriate to use a relatively small window to reduce the probability of incorrectly

correlating unconnected events. Some interesting information discovered with the

WWW experiments include the fact that students rarely ever use bookmarks to access

 25

course pages, but rather navigate there from department home pages. The ability to vary

the window width and frequency used for discovery of frequent episodes could be used to

help discern multiple instances of similar events in relation to packet information streams

may be useful.

 2.3.5 Hidden Markov Models

 Hidden Markov models were initially introduced and studied in the late 1960s and

early 1970s [Edd00]. They are extremely rich mathematical structures and can therefore

form the theoretical basis for many applications, especially where formalism is important.

The underlying assumption of the statistical model used in Markov and other stochastic

models is the signal examined can be characterized as a parametric random process, and

the parameters of the stochastic process can be determined or estimated in a well-defined

manner.

 Of course, HMMs are based on Markov chains. A collection of discrete-valued

random variables {Qt ≥ 1} forms an nth order Markov chain if P(Qt = qt| Qt-1 = qt-1, Qt-2 =

qt-2, …, Q1 = q1) = P(Qt = qt| Qt-1 = qt-1, Qt-2 = qt-2, …, Qt-n = qt-n) for all t ≥ 1, and all q1, q2,

…, qt [Bil02]. In other words, given the previous n random variables, the current variable

is conditionally independent of every variable earlier than the previous n. It is

noteworthy that this conditional independence is sometimes not strictly adhered to in

practice while still achieving very good results from a HMM. For example, words and

sentences follow sets of grammars. Clearly, there are some parts of a word or of a

sentence that are conditionally dependent on what comes before them. For example, if

we start a valid word with “ch” there is a set number of possibilities for what can follow.

However, HMMs have still been used for the recognition of the spoken and written word

 26

with much success.

 As a simple example of how HMMs can be used consider tossing a coin behind a

curtain [Rab89]. In this scenario, the number of coins and mechanism of tossing is

unknown, while the output of the tossing can be observed. To design a HMM for this

scenario, the number of states needed to represent the process must be decided. For

example, should a single coin or multiple coins be used to represent the unknown

process. A single coin model is shown in Figure 2-11 below. In this model, the

H

P(H) 1-P(H)P(H) 1-P(H)
1-P(H)

P(H)

T

 1-P(H)

H T

P(H)

Figure 2-11 1 Coin Hidden Markov Model

probabilities are written as P(H) and P(T) where P(T) = 1-P(H). Since the number of

actual coins being flipped is not known, other models may also be appropriate such as

two, three, or n coin models. The decision of which is the best model can only be

accomplished once the different proposed models have been created and tested on the

available data. It is in this way that the use of hidden Markov models is considered more

of a practice or an art form than a science. Only through experimentation with the

underlying model can the best representation be found. The number of states and how

they are connected is normally a task that is accomplished by hand with extensive

knowledge of the characteristics of the data to be searched. However, efforts have been

made to develop algorithms to learn the needed architecture for general HMMs [Bil02].

 27

Once a proper model is created, there are two ways it can be used. A HMM can be used

to produce a stream of output that is similar to what is produced by the system it is

modeling. Using the coin example, the HMM could produce a stream of heads and tails

that should represent one possible outcome in the real system. Another way to use

HMMs is to take the observations from the system and choose a corresponding state

sequence that best explains the observations [Rab89]. In other words, HMMs can be

used for classification purposes.

HMMs have been used effectively for many different problems such as hand

writing recognition and speech recognition. They have also been applied to packet

information as in the case of the keystroke timing attack mentioned in Section 2.2. In this

specific example, the character pairs are considered to be unobservable states and the

latency between keystrokes are the observable output [SWT01]. Several assumptions

have to be made in order to model the data in this fashion. First, the probability of

transitioning to any other state or key has to be independent of the previous states as

mentioned above. This assumption is true for passwords chosen at random, but not in the

case where passwords are chosen based on dictionary words or close groupings of letters.

However, HMMs work well even when the conditional independence rule is not strictly

followed as mentioned earlier. Second, the probability distribution of the latency timing

is only dependent on the current pair and not on any previous characters in the sequence.

Of course, this is another relaxation of the formal independence rule since reaching for a

far away letter in a previous sequence can have some effect on the latency. Once again,

this does not seem to affect the ability of the HMM to provide useful results [SWT01].

HMM parameters can either be obtained by training initially unlabeled sequences

 28

or built from sequences where the state paths are assumed to be known. Training

algorithms are often used when a plausible alignment for the sequences in question is not

already known. The standard training algorithm is a Baum-Welch expectation

maximization based on gradient descent.

2.4 Summary

 This chapter discusses techniques to characterize encrypted packet streams. The

chapter begins with some background into why this research is needed. Next, current

research in the area of traffic analysis that relates directly to this effort is covered.

Finally, techniques of data analysis and classification methods are discussed and shown

to be applicable in the area of network traffic analysis.

 29

III. Methodology

3.1 Background

In Chapter II, current research in network traffic analysis and methods for the

analysis and interpretation of network data are presented. Three different types of traffic

analysis are described to include a probability based attack on encrypted IP headers

[Bel97], a signature based attack for analysis of SSL encrypted web browsing [ChA99],

and a timing analysis attack on SSH [SWT01]. This research shows that the study of

traffic characteristics yields useful information about the network and that further

research into this area is warranted.

The techniques used to analyze and interpret the wireless 802.11 traffic in this

research include training a neural network and a decision tree model, both of which are

machine learning approaches. Pilot studies are conducted to determine the relevant

factors and the settings for the different techniques that provide appropriate performance

and these will be discussed in Section 3.2.2 and in more detail in Chapter 4.

As the trend toward wireless communications continues to increase, the

possibilities of in depth traffic analysis, even of encrypted data, need exploration in order

to provide both offensive and defensive capabilities.

3.2 Problem Definition

 3.2.1 Goals and Hypothesis

 The primary goal of this research is to determine which applications and how

many instances of each are accessing the wireless medium during a given time window

under the assumption that the traffic is encrypted. It has been shown that unique

characteristics of applications are manifested within packet transmissions due to the

 30

802.11 protocol [And98]. This research shows that such characteristics can be

recognized using machine learning concepts and therefore demonstrates that the

identification process can be automated.

 3.2.2 Approach

 Wireless data is captured and machine learning techniques trained to recognize

which applications are accessing the channel. The two techniques used for testing are

neural networks and decision trees. Data streams are analyzed based on a sliding time

window where the size of the window varies. For example, the window may be set to a

size of 11 packets if that is sufficient information for the neural network and decision

trees to make correct decisions a given percentage of the time at a certain confidence

level. A sliding window for network data is important for determining how many

instances of applications are accessing the network and has been discussed in Chapter II

[MTV97]. The results from the different algorithms and settings within algorithms are

compared and analyzed in order to find the most effective technique. For example, the

neural network technique shows an appropriate level of performance when using back

propagation to reduce the mean squared error after each training epoch. Back

propagation is a form of supervised learning used in neural networks whereby the inputs

to the network must include the sample to be analyzed and the anticipated or desired

outputs in order to calculate the error for a particular training cycle. An important choice

when using decision trees is whether or not to allow pruning. Pruning both reduces the

size of decision trees and also increases the ability of the system to generalize.

3.3 System Boundaries

 The System Under Test (SUT) is called the Application Determination System

 31

 (ADS) as shown in Figure 3-1. This system includes the machine learning

algorithm used for identification, size of the time window used for training, percentage of

Machine Learning
Algorithm

Distribution of
Training vs.
Testing Data

Settings

 Sliding
Window
Size

Output Results

Figure 3-1: Application Determination System

data used for training vs. testing, and parameters that apply to the algorithms used.

Within this system, the Component Under Study (CUS) is the algorithm used (neural

network vs. decision trees) to classify the data.

 Although this work is being carried out on an ad-hoc IEEE 802.11b wireless

network, the results are applicable to any network where packets have not been padded to

prevent analysis. Machine learning techniques are inherently resistant to network

protocol differences [KaV94]. No attempt is made to decrypt information in the packets

or the headers. It is assumed this information is too difficult to obtain [Mul02]. It should

be noted that machine learning techniques are equally adept at learning both encrypted

and unencrypted traffic characteristics. This study limits the applications accessing the

medium to e-mail, ftp, http, and print jobs.

 32

 3.4 System Services

 The ADS system identifies the type of applications accessing the medium. There

are three possible outcomes of this identification process. One possible outcome is the

correct identification of all applications accessing the channel. A second possibility is the

false positive identification of applications. False positives occur when the system

reports that applications are present on the channel when they are not. The third

possibility is the combination of both true and false positives. Since the designs of both

the neural networks and decision trees in this experiment force all samples to be placed

into one of the four categories, there is no possibility of an unknown classification.

3.5 Performance Metrics

 The ADS is similar to some commercially available intrusion detection systems

except that it looks for a “signature” to identify an application rather than an attack

[And01]. Therefore, one way to measure the performance of the ADS is to use a

Receiver Operating Characteristic (ROC) curve. A ROC is a graph of correct

identifications (true positives) as a function of incorrect ones (false positives) or, in other

words, the sensitivity versus specificity of the system. While in an intrusion detection

system, the ROC measures attacks identified over false alarms, in the ADS it instead

measures the ratio of correct identification of applications to incorrect ones. Consider the

following modified extension of Bayes’ theorem:

P(M|IDM) =
)|()()/()(

)|()(
MIDMPMPMIDMPMP

MIDMPMP
¬¬+

 (3.1)

where M is e-mail accessing the medium and IDM is the correct identification of e-mail

[Mar01]. For example, if the probability of e-mail accessing the medium, correctly

identifying mail, and false identification as e-mail are 0.25, 0.80, and 0.05 respectively,

 33

the probability of correctly identifying the e-mail given an e-mail accessing the medium

is 0.842. Another metric of interest is the ratio of correct identifications to the total

number of applications for a given time frame. For example, the system may correctly

identify 70 out of 100 applications sent in some arbitrary time frame which results in a

70% success rate. This identifies the performance of the system as the third type of

possible outcome listed in the system services section. In a similar fashion, a 100%

success rate would identify the first outcome, while 0% would identify the second. Since

four applications are being targeted for this study, another value to compare the system

against is the probability of correct random guessing which is 0.25. In other words, 0.25

is the baseline from which success is measured and a success rate of 30% is only 5%

better than random guessing. A combination of these techniques is used to determine the

outcomes of the system.

3.6 Parameters

 3.6.1 System

 The system parameters for the ADS are enumerated in Table 3-1 and include the

algorithm used for identification (neural network vs. decision tree model), size of the

time window used for training, percentage of data used for training vs. testing, and

Table 3-1 System Parameters for ADS

Algorithm Used: Neural Network, Decision Trees

Sliding Window Size: Small, Medium, Large (11, 31, 51 Packets)

Distribution of Data: Holdout Method, Rotation Method

Algorithm Parameters: Underlying Model, Learning Method,
Activation Function, Etc.

 34

parameters that apply to the particular algorithms used. For the neural network, these

parameters include the design of the network itself which includes the number of input,

hidden and output nodes, the selection of training method (i.e., back propagation vs.

radial basis learning), number of training cycles (epochs), and type of activation function.

For the decision trees, the parameters also include the design of the underlying network.

Although there are many parameters to consider for each algorithm, pilot studies are

conducted to determine the appropriate settings to use.

 3.6.2 Workload

 Typically, workload parameters are characteristics of service requests to the

system. However, in the case of the ADS it is more appropriate to define the workload

by the amount of data on the wireless medium. Since packets are either present or not,

“service requests” exhibit an on-off characteristic. Thus, the packets on the channel are

the workload. The workload, then, varies from no traffic on the medium to many clients

and applications competing for the medium at the same time. This workload will affect

the way the recognition algorithms are set up. In an 802.11b network, the absence of any

applications accessing the medium typically results in a majority of traffic being beacon

packets (61 bytes). Since the detection of this “non-application” state is fairly trivial it is

not incorporated into these experiments.

3.7 Factors

 Table 3-2 shows the factors that are varied. The algorithms used to learn and

recognize applications are a feed forward, back propagating neural network and a pruned

decision tree model. The sliding window size has been shown to have a major impact in

other similar studies of pattern detection and is varied between a small, medium and large

 35

Table 3-2 Factors Varied

Algorithm Used: Neural Network, Decision Tree

Sliding Window Size: Small, Medium, Large (11, 31, 51 Packets)

Type and Number of Application(s) E-mail, Ftp, Http, Print (1, 2, or 3)

level [MTV97]. These levels are 11, 31, and 51 packets respectively. The task of

recognizing which applications are accessing the medium is more complicated as the

number of applications to be identified increases. The levels for this factor are varied

from one to four and the relative performance at each level measured. It is likely that this

factor is heavily dependent on the window size.

3.8 Evaluation Technique

 For this study, direct measurement is the most appropriate evaluation technique.

While techniques for constructing analytical models for common performance metrics

such as system throughput and delay are abundant, few if any such techniques exist for

modeling the pattern recognition ability of a system. A wireless encrypted data stream is

captured and analyzed. Significant characteristics are parsed and separated into groups of

data for the testing and training of the machine learning techniques. Since the

implementation of both techniques used in this research rely on supervised learning, the

knowledge about what applications are accessing the network is used to assist in the

learning and evaluation of those techniques.

3.9 Workload

 The workload is the number of applications and clients accessing the channel. It

ranges from one to three systems. The difficulty of identifying the correct number of

 36

applications is expected to increase significantly with the inclusion of each additional

system. It may also be the case that the ideal window size used in training and testing

will vary according to the workload. For example, with only one system accessing the

medium, only one of each type of application can be accessing the medium in a given

window. This will likely have a positive effect on the classification ability of the

different algorithms and also affect the size of the window required. Another possibility

suggested by the pilot studies is the existence of unique packet size “signatures” which

can be used to determine the approximate start, end and therefore also the number of

applications present on the channel.

 Text files taken from the early chapters of this work are used to create the files for

the workload. These file sizes included 1, 10, 50, and 100 Kbytes. The text is copied and

pasted into the body of the e-mail messages versus being included as an attachment. The

copied text is pasted into word pad files and saved for use with ftp. These same word pad

files are printed for that portion of the workload. Very simple web pages are also created

using the same text. Since the type of files used is not a factor in this study, the same text

is used for all applications.

3.10 Experimental Design

 There are four factors in this experiment: detection algorithm, sliding window

size, types of applications accessing the medium and number of nodes. For the detection

algorithm, there are two levels which include a back propagating feed forward neural

network and a decision tree model. Pilot studies show that the appropriate levels for the

size of the sliding window are 11, 31, and 51 packets. Using a sliding window results in

samples that overlap from the data stream. For example, using a window size of eleven,

 37

the first segment analyzed is packet one through eleven and the next segment is packet

two through twelve. For the next factor there are four levels: e-mail, ftp, http, and print.

The last factor, number of nodes, ranges from one to three. This means that the number

of experiments, n, for a full factorial design is

 n = ∏ = 84 (3.2)
=

k

i
im

1

where k = 3 is the number of factors and m is the number of levels for each factor. The

number of experiments indicate a full factorial design is appropriate.

 Based on pilot studies, the variability in the performance of the machine learning

algorithms using different training and testing sets is fairly small with a maximum range

of approximately thirteen percent observed with neural networks and only four percent

with decision trees. From these pilot studies, settings that produced good results for the

different algorithms were determined. For example, back propagation is used for the

training algorithm within the neural network because that technique repeatedly

demonstrated good performance with low variability compared to other techniques such

as radial basis learning. This low variability means a fairly narrow confidence interval at

a 0.05 significance level can be achieved to characterize the performance of ADS with

only four replications of the neural network experiments. Since the algorithm used to

build the decision trees is deterministic, no replications are necessary. Assuming an SSE

of 370 for a sample size of 1000, (values taken from pilot study) the standard deviation of

error is

 = es
)1(2 −r

SSE
k = 3.40 (3.3)

 38

where k = 3 is the number of factors and r = 4 is the number of replications. The standard

deviation of effects is

 = /qis es rk2 = 0.491 (3.4)

The t-value at 16 degrees of freedom and a 95% confidence is 2.120. Multiplying this by

the standard deviation of effect obtained in (3.4) gives the resulting value of 1.041 which

gives a confidence interval of

 . (3.5) 041.1miq

Using the case of the response variable in this study, this means it has a range of (61.96,

64.04) which is acceptable and verifies that a total of 210 experiments (4 replications for

NN experiments for 168 plus 42 for decision trees) is appropriate.

3.11 Analyze and Interpret Results

 The data gathered is used to calculate confidence levels as indicated above. The

confidence intervals are used to show that the system will perform within a specified

range 95% of the time. The ratio of correct responses to total number of applications will

be compared against both actual data (100%) and random guessing (25%) to determine

the performance of the system.

3.12 Summary

 This chapter presents the methodology for conducting this research. The goal is

to use machine learning techniques to determine the number of each of four different

application types accessing the wireless medium. Based on this goal, a procedure is

developed to make use of insights gained from pilot studies and direct the rest of the

research and experimentation. The ABS is described as the SUT with the specific CUS

being the algorithms used to learn the traffic patterns. The system parameters are

 39

described and factors to be varied are selected and explained. Finally, an analysis of the

experimental design is covered to include the number of experiments and the number of

repetitions required to achieve the goals of the study.

 40

IV. Analysis and Findings

 The purpose of this chapter is to present and interpret the findings from this

research. The chapter begins with a brief description of the 802.11b network topology

used for data collection. Next, an analysis of the collected data describing unique

characteristics which allow the machine learning (ML) techniques to classify the different

applications is presented. Following this is a more detailed description of the specific

algorithm settings used for the neural network and the decision trees. After that, results

from the machine learning classifications are presented and analyzed with the final

section presenting the ANOVA for the data.

4.1 802.11b Ad-Hoc Network Topology

 Three computers, two laptops and one desktop, are configured as members of an

Independent Basic Service Set (IBSS) or ad-hoc work group. The computers use

Enterasys Networks csi6d-aa-128 IEEE 802.11b cards with a maximum bit rate of 11

Mbps. A fourth computer is used as a passive “sniffer” using Airopeek NX software by

Wildpackets and a Cisco Aironet 350 series PCMCIA wireless local area network (LAN)

card. Experiments are run with both encryption disabled and also with Wired Equivalent

Privacy encryption enabled.

 Two of the computers from the work group are set up as servers for ftp, e-mail,

and http using Microsoft Internet Information Services (IIS). Both of those computers

have printers configured and shared although no real printers are attached to them. Using

IIS, ftp servers are used to transfer files. For e-mail, Simple Mail Transfer Protocol

(SMTP) is configured via IIS and Microsoft Outlook Express Version 6 is used. Web

traffic is accessed via a folder on the server machine. Privileges are set so any user may

 41

access them. The “phantom” printers are added to each of the other computers in the

work group.

4.2 Collected Data

 The data used consists of text only for the four applications used (e-mail, ftp, http,

print). Text taken from the first several chapters of this work is placed into the body of

the e-mail messages. For the file transfers (ftp), the text files (.txt) are saved in Microsoft

Notepad version 5.1. The DOS ftp put command is the only protocol used in the ftp

research. The web pages are created using the text data with links between different

pages of text. Print jobs are executed directly from Notepad.

 The total combinations of collected traffic are shown in Table 4-1. Note that the

e-mail, e-mail combination (EE) is only tested once to show that this case is not

significantly different than the single e-mail case and show why other multiple cases are

excluded from this research.

Table 4-1 Combinations of Data Collected

EMAIL (E) EMAIL-PRINT (EP)
FTP (F) FTP-HTTP (FH)

HTTP (H) FTP-PRINT (FP)
PRINT (P) HTTP-PRINT (HP)

EMAIL-EMAIL (EE) EMAIL-FTP-HTTP (EFH)
EMAIL-FTP (EF) EMAIL-FTP-PRINT (EFP)

EMAIL-HTTP (EH) EMAIL-HTTP-PRINT (EHP)
 FTP-HTTP-PRINT (FHP)

 Collecting the samples of single applications is straight-forward as instances of

each application are sent on an otherwise empty channel (except for 802.11b beacon

packets). Several sizes of the files are sent or viewed (in the case of http) in order to

analyze unique characteristics of the different applications that would permit proper

 42

classification via machine learning techniques. The file sizes used for each application

ranged from 1 kilobyte to 100 kilobytes.

 Collecting samples of applications two at a time results in a total of six unique

combinations of applications. One experiment was run to show that there is little or no

difference between the single application and two instances of the same application with

respect to identification via the machine learning techniques. For the three application

case, four unique combinations result.

 Although signal strength, channel utilization, throughput and other characteristics

are collected, only the packet size is used for analysis and classification of the

applications. This is because packet size proved to be the strongest indicator of the

classification goal (application type). An initial analysis of the distribution of packet

sizes amongst the four applications revealed several interesting facts. First, there are

definitely packet sizes unique to each application. Of course, this is limited to only the

four applications studied. There are generally two classes of unique packet sizes which

occur in each type of transmission. The first kind are the “leftover” packets which occur

in application transmissions of fairly large (>20Kbyte) size. These occur in different

ratios after the 1544 byte maximum transfer units (MTU) of the transmission. For

example, the leftover packets for e-mail transmissions are 976 bytes. These unique sizes

are probably due to the underlying protocols of the application programs. One problem,

however, is that these unique size packets do not occur when transferring smaller files

such as the 1 and 10 kilobyte transmissions. The second kind of unique packet sizes

found occur in both the small and large transmissions. These packet sizes are not only

unique among the four applications, but among the individual transmissions as well.

 43

Furthermore, these sizes occur near the beginning or the end of such transmissions.

Some of these unique packet sizes occur in “signature” sequences which allow the

identification of the start and end of an application transmission. For example, the packet

size 182 is in every e-mail sent regardless of size and the packet size sequence 154-14-

82-14-132 is always near the end. The 182 byte packet near the beginning of every e-

mail transmission is the SMTP application announcing itself as a mail service. The basis

of this research is that unique characteristics exist in encrypted traffic and as such a

comparison is made between unencrypted traffic sizes and encrypted traffic sizes for the

same files. The results in Table 4-2 show that the unique sizes found in the unencrypted

traffic also occur in the encrypted version in the same numbers. For all but the 802.11b

Table 4-2 Unique Sizes for Unencrypted vs. Encrypted E-Mail

Packet Type Unencrypted Encrypted

802.11 ACK 14 14
802.11 BEACON 61 61
SMTP 76 84
SMTP 81 89
SMTP QUIT 82 90
SMTP 84 92
SMTP 90 98
RCPT TO 98 106
HELLO 105 113
MAIL FROM 106 114
SENDER OK 116 124
START MAIL INPUT 122 130
SERVICE CLOSING CHANNEL 132 140
MAIL FOR DELIVERY 154 162
MAIL SERVICE 182 190
SMTP DATA 968 976
SMTP DATA 1536 1544

acknowledgement packets (14 bytes) and beacon packets (61 bytes), the unique sizes in

the encrypted traffic are 8 bytes larger which results from the encryption process.

Although only WEP encryption is examined, the same unique characteristics likely exist

 44

with other encryption techniques as well with different amounts added to the unencrypted

packet size due to the particular encryption technique and strength used. Other

information could be gained from examining packet size as well. For example, in file

transfers (ftp), there is always one unique packet size from a range of sizes. Files named

(1K.txt, 10K.txt, 50K.txt, 100K.txt) result in packet sizes of 89, 90, 90, and 91 bytes

respectively. This packet contains the file name being transferred. The number of

characters in the name of the file being transferred can be determined by simply

subtracting 83 bytes from the size of this packet. Using encrypted files, the same result

can be obtained by subtracting 122 bytes from this unique packet that appears near the

beginning of a file transfer.

 This is significant since machine learning techniques require some unique

characteristic be present in the data to perform classifications. The decision of attributes

to use for training is often much more important in these types of classifications than the

design of the system itself.

4.3 Data Preparation

To use ML techniques for the classification of data, it must first be prepared. The

program used to model neural networks is Java Neural Network Simulator (JNNS) which

is a graphical version of the Stuttgart Neural Network Simulator (SNNS) [Fis98],

[Zel94]. Data must be randomized and equally distributed for training to work

effectively. After normalizing the data to fall between 0.0 and 1.0, the packet sizes for

single cases of e-mail, ftp, http, and print applications are randomly selected as the next

sample. As each of these samples is written out, the desired output is added. Since there

are four nodes in the output of this neural network, the output corresponding to the

 45

appropriate node is set to 1 while the others are left as 0 as shown in Figure 4-1. For

Input Signal (Packet Size)

ftp

1 0 0

Input Layer

Hidden
Layer

Output Layer

Output Response

0

 email http print

Figure 4-1: Neural Network with Desired Output for Email Sample

example, if an application is e-mail, the desired output is 1000. In the interest of space,

only four input nodes are shown in Figure 4-1 though the true number is 11, 31, or 51.

The files created for training and testing thus consisted of groups of 11, 31, or 51 packets

and the appropriate output response for each based on which application it came from.

 The Waikato Environment for Knowledge Analysis (WEKA) [WiF00] is used in

the decision tree experiments. To prepare the data for this application, the files needed to

be put into an attribute relation file format (ARFF) [WiF00]. In this format, attributes are

listed at the beginning of the file preceded by an @ symbol as shown in Figure 4-2. If the

data is nominal or categorical, categories must follow the name in curly braces.

Otherwise the type of data must follow (i.e., numeric). Of course, the number of packets

per sample is 11, 31 or 51 as with the neural networks but Figure 4-2 only shows 4 to

conserve space. The final attribute in the relation portion of an ARFF file is the class to

 46

% Comments
%
%
@RELATION PacketSize

@ATTRIBUTE packet1 NUMERIC
@ATTRIBUTE packet2 NUMERIC
@ATTRIBUTE packet3 NUMERIC
@ATTRIBUTE packet4 NUMERIC

@ATTRIBUTE application {email, ftp, http, print}

@DATA
0.009067358,1,0.009067358,1,http
0.073834197,0.009067358,0.066709845,0.009067358,ftp
0.009067358,0.234455959,0.009067358,0.124352332,print
0.009067358,0.054404145,0.009067358,0.123056995,email

Figure 4-2: Sample ARFF File

be determined (application). After that, the data for training or testing follows. After

each sample of packet size data is the class for that particular sample. Unlike the data for

the neural networks, there is no reason to randomize the data for the decision tree

induction algorithm.

4.4 Neural Network Configuration

 Learning in a neural network can be implemented by any one of a large number of

very different algorithms. Pilot studies with the 802.11b packet size data indicated

backpropagation would be effective. Other learning algorithms used for the pilot studies

included radial basis learning, quick propagation, and batch backpropagation. About 80

percent of all neural network projects use backpropagation because of its ability to

classify well in diverse situations [BuC93].

 The topology of the network is feed-forward. This means that the connections

between the nodes only go in one direction, from the input to the hidden and then the

output nodes. The network used consists of three layers. The input layer has 11, 31, or

 47

51 nodes depending on the test being run. The nodes in the middle of the network,

known as hidden nodes, allow the network to solve problems other than those that are

linearly separable (the only problems solvable with single layer neural networks). The

decision of how many nodes to include in the hidden layer is more of an art than a

science, but most designers suggest somewhere between 1 and the number of input nodes

in the network. Again, pilot studies measured the effects of changing the number of these

nodes from one to ten. Five nodes showed the best results. The output layer represents

the classes of applications and so there are four of them. The nodes correspond to e-mail,

ftp, http, and print applications accordingly.

 The transfer function is a combination of the activation function and the output

function for a node. The default output function in JNNS is identity which means the

input signal is propagated if the activation threshold is surpassed. The logistic activation

function is used since it resulted in the best performance in pilot studies comparing it

against the tanH function.

 Backpropagation uses a generalized delta rule to update weights on connections.

The generalized delta rule is

∆wij = βEf(I) (4.1)

where wij is the weight between node i and j, β is the learning constant (a parameter

between 0 and 1 set to a default 0.2), E is the error for the neuron, and f(I) is the input to

the neuron. Errors for neurons can be calculated in two ways. Output neuron errors are

calculated by subtracting the actual output of the neuron from the desired output minus an

error acceptance value. These are set to 1 and 0.1 respectively. In other words, if the

output of a particular node is supposed to be 1, and the actual output is 0.89, the error

 48

would be 0.9 – 0.89 or 0.01. This calculation cannot be done on the internal nodes of a

network since the number of nodes differs from the number in the output layer. Instead,

the error in the output layer neurons is passed back to the middle layer neurons and is

weighted by the same connection weights that propagate the input forward. The overall

error in the middle neurons is therefore the weighted sum of the errors for each of the

output neurons. It is these weights on the connections that contain the “learning” of the

system.

4.5 Neural Network Results

 Since initialization of a neural network takes random weights, the learning of the

network will vary. To determine a confidence interval for the results, four replications of

the neural network experiments were done. An important consideration is how to split

the data up for training and testing of the network. One common approach is known as

cross validation and a four-fold cross validation is performed for the single application

case in this research. The data for the single case (5,224 samples) is separated into four

equal sections. Four different training procedures are applied such that each of the four

data partitions takes its turn as the testing data and the rest are used for the training data.

The results for all four tests are averaged for an overall result. Since the scope of this

effort is to demonstrate a system can be automated to characterize encrypted data

streams, the full combination of applications are not trained. The reason for this is that in

this pedagogical example, only four applications are used and the unique combinations of

those applications are already 14. In a real system, it would not be practical to train a ML

algorithm on every combination of applications. Instead, the network is only trained on

the individual applications.

 49

 To test the system, a confusion matrix is used. A confusion matrix is simply a

table listing the true positives and false positives for a particular classification attempt as

shown in Table 4-3. A DOS-based function from the SNNS suite called analyze is used.

This function uses a winner takes all (WTA) approach to the confusion matrix. In other

words, whichever node for a particular output is the highest is the one the system

identifies a particular sample as. In Table 4-3, there are only single applications.

Table 4-3 Sample Confusion Matrix

 EMAIL FTP HTTP PRINT %
Correct

EMAIL 900 312 27 27 0.710
FTP 294 870 40 62 0.687

HTTP 497 586 48 135 0.037
PRINT 5 49 7 1205 0.951

However, it is intuitive that if the first row sample actually contained e-mail and ftp data,

the e-mail row should be added to the ftp row and divided by the row total. This is how

the percentages are calculated in the results that follow.

 To determine if the WTA approach might be effective in this case, the node

outputs for a trained sample (e-mail and http) are examined as shown in Table 4-4. The

Table 4-4 Node Output for Email-Http Sample

EMAIL FTP
Mean 0.369 Mean 0.306
Standard Deviation 0.265 Standard Deviation 0.093
Confidence Level
(95.0%) 0.006

Confidence Level
(95.0%) 0.002

Confidence Interval (0.363, 0.376) Confidence Interval (0.304, 0.309)

HTTP PRINT
Mean 0.336 Mean 0.050
Standard Deviation 0.171 Standard Deviation 0.161
Confidence Level
(95.0%) 0.004

Confidence Level
(95.0%) 0.004

Confidence Interval (0.332, 0.340) Confidence Interval (0.046, 0.054)

 50

means for the node outputs show that the e-mail and http nodes are higher on average.

Further, none of the confidence intervals overlap which means these ranges are

statistically significant. Using this approach, the number of correct classifications over

the total number of samples in a file is the percent correct. Since the function is designed

to only declare one node the winner, the confusion matrix had to be analyzed in another

way for a multiple application case. The true positives of the one case allowed by the

system and the “false positives” of those cases that actually are in the sample are added

together and then divided by the total number of samples for a true classification rate.

 The neural networks trained in this research performed on average 38 percentage

points better than what would be expected for random guessing (25%) or at an average of

63% correct classifications. The 95% confidence interval for the classifications is (0.525,

0.733) which does not include 0.25 so the result is statistically significant. This is

certainly enough to show that classification is possible, but not enough for any sort of real

implementation of an ADS. Table 4-5 is an example of the overall confusion matrix for

Table 4-5 Neural Network Performance for Small Window (11)

 EMAIL FTP HTTP PRINT
%
Correct

EMAIL 11 70 941 284 0.008
FTP 26 72 724 484 0.055
HTTP 47 40 884 335 0.676
PRINT 6 5 251 1044 0.799
EF 118 43 2797 465 0.047
EH 123 75 6006 858 0.867
EP 134 70 5085 2242 0.315
FH 571 343 8589 1080 0.843
FP 630 270 8915 2234 0.207
HP 12 22 258 1013 0.973
EFH 711 488 11279 2978 0.807
EFP 894 724 14044 9514 0.442
EHP 150 174 4710 7810 0.986
HFP 595 613 8060 3893 0.954

 OVERALL 0.657

 51

one replication of the neural network experiment at the small window size level. It is

important to notice that the total numbers of samples for the various combinations are

different. This is why obtaining the percentage correct by taking the sum of the number

of correctly classified samples over the total number of samples is important. In other

words, instead of just taking the average of averages we must take the sum of the

numerators and divide this by the sum of the denominators (weighted average). These

ratios are different when the bases are different. Although the file sizes used to create the

different combinations are the same, the number of packets generated varies from

application to application. For example, printing always takes from two to five times the

number of packets for the same size file as the other three applications. Furthermore, it is

intuitive that there are more packets when transmissions of more than one application are

sent. Four replications were run for each of the three different window sizes (11, 31, and

51). Instead of showing the confusion matrix for each replication (available in Appendix

A), the weighted average for each neural network is combined in Table 4-6. The sections

Table 4-6 Averages for All Replications of Neural Network Performance

X11 X31 X51
EH 0.829 EH 0.939 EH 0.818
EF 0.346 EF 0.309 EF 0.853
EP 0.543 EP 0.480 EP 0.740
FH 0.547 FH 0.603 FH 0.380
FP 0.267 FP 0.203 FP 0.450
HP 0.881 HP 0.807 HP 0.648
FEH 0.792 FEH 0.808 FEH 0.793
FEP 0.647 FEP 0.634 FEP 0.895
PEH 0.966 PEH 0.960 PEH 0.811
PHF 0.784 PHF 0.757 PHF 0.725
EMAIL 0.251 EMAIL 0.395 EMAIL 0.701
FTP 0.213 FTP 0.220 FTP 0.595
HTTP 0.445 HTTP 0.622 HTTP 0.149
PRINT 0.821 PRINT 0.871 PRINT 0.900

OVERALL 0.657 OVERALL 0.658 OVERALL 0.723

 52

of the table are grouped by window size and number of applications.

 Using ML techniques for the classification of applications based on the size of

packets relies on unique packet sizes present in those applications. It is intuitive that the

larger the collected sample size is the more of these unique sized packets there should be

and so the ML techniques should perform better. The weighted averages for the systems

are 65.7%, 65.8%, and 72.3% respectively. The ML technique seems to perform better

with more data available. Applying a 90% confidence level to these averages results in

(62.2, 69.3), (64.1, 67.4), and (68.2, 76.4) for the three window sizes respectively. At the

90% confidence level, there is no statistically significant difference between the

performances of the 11 and 31 window neural networks.

 The mean for the single data seem to add credence to the hypothesis that the

systems should perform better as the window size increases as shown in Table 4-7. In

 Table 4-7 Averages for Single Application Neural Network Performance

X11 X31 X51
EMAIL 0.251 EMAIL 0.395 EMAIL 0.701
FTP 0.213 FTP 0.220 FTP 0.595
HTTP 0.445 HTTP 0.622 HTTP 0.149
PRINT 0.821 PRINT 0.871 PRINT 0.900

every case except for HTTP the percentage of correct classifications does increase as the

window increases from 11 to 51. It is not clear why the HTTP percentage correctly

classified decreases at the window level of 51. The variability of the HTTP percentages

is high as the values for the four replications ranged from about 1.4% to 51.3%. All three

systems performed very well on the print data. This is probably because the number of

unique packet sizes in print transmissions is much higher than in the other applications.

A graph of inter-application packet sizes is shown in Table 4-8. Note that this is not an

 53

Table 4-8 Packet Sizes by Application

EMAIL HTTP PRINT FTP
14 14 14 14
20 20 20 20
28 61 61 61
61 84 84 84
72 88 172 92
84 92 176 102
90 123 180 104
92 129 184 108
98 147 188 114

112 148 192 141
113 150 200 364
114 156 216 1544
124 160 224
130 173 236
190 184 272
976 188 288

1544 204 336
 205 382
 210 398
 212 404
 216 418
 218 432
 221 484
 222 520
 223 712
 264 720
 272 848
 276 860
 288 888
 375 908
 384 920
 1316 940
 1324 968
 1401 1012
 1544 1140
 1156
 1308
 1348
 1396
 1400
 1416
 1452
 1488
 1544

all inclusive list but contains those packets observed throughout this effort. Unique

 54

packet sizes are highlighted for each application.

 As for the multiple application data, no clear trends can be observed. In fact,

occasionally the 11 window system performs better than the 31 which performs better

than the 51. This is the reverse of what is expected since more information should be

available as the window size increases. The percentages for the multiple cases could

probably be improved by training the network on those samples. However, this would

make the system impractical for anything other than a “toy” implementation since the

number of training instances would increase exponentially with the number of

applications used.

4.6 Decision Tree Configuration

 Decision trees incorporate divide and conquer techniques. Data samples to be

classified are analyzed based on some measure of the pureness of the nodes produced.

The particular tree induction algorithm used herein is an implementation of the C4.5

algorithm in the Waikato Environment for Knowledge Analysis system known as J48

[WiF00].

 The idea of purity involves entropy and the information gain achieved by splitting

on the different nodes available. However, this method of determining the purity of a

split suffers from a strong bias toward tests with many outcomes [Qui93]. In other

words, if a particular attribute is made up of unique entries (such as a phone number for

different people) the information gain will favor that attribute for the next split even

though that attribute may or may not be a good indicator of class since the entropy for a

node with only a single case is 0. However, another goal of decision trees is to produce

models with the least number of splits while achieving low entropy.

 55

 To correct this deficiency, the decision tree implementation in WEKA uses what

 is known as the gain ratio criterion [Qui93]. The gain ratio tests to ensure the

information gain is at least as large as the average gain over all tests examined. Split

information is

split info (X) = - ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
= T

T
T
T i

n

i

i
2

1
log (4.2)

where n is the number of outcomes possible for a particular attribute, T is the set of

training samples, and iT is the number of cases which take each path if the attribute is

selected. The gain ratio then becomes

 gain ratio (X) =
)(
)(

Xsplit
Xgain (4.3)

Revisiting an example from Chapter 2, the information gain for splitting on the outlook

data is the entropy of the original unsplit data minus the entropy after splitting on the

outlook variable so that we have 0.918 – 0.675 = 0.243. The data for splitting on the

outlook variable is shown in Table 4-9. To calculate the split information using this data

Table 4-9 Outcome Variable for Outlook

Sunny Overcast Rainy
Yes Yes Yes
Yes Yes Yes
No Yes Yes
No No
No

gives

 - (5/12) * log2(5/12) - (3/12) * log2(3/12) - (4/12) * log2(4/12) = 1.554 (4.4)

Applying (4.3) to get the gain ratio gives 0.243/1.554 = 0.156. This modification has the

effect of increasing the denominator and therefore reducing the overall gain ratio when

 56

the number of splits increases. This ratio is still a “bigger is better” metric so splits that

tend to separate the data into single case nodes should be avoided.

 Since the data used is continuous, another point must be made about the way

decision trees deal with this type of data. So far, the examples have discussed only

discrete data. The difference with continuous, numerical data is that there are as many

possible thresholds in the data as there are unique numbers in the range of that data

[WiF00]. The training instances T are sorted on the values v of the attribute being

considered. If there are m such values, then there are a total of m-1 possible splits on the

attribute and each one is considered as described above for the discrete data. This work

is necessary to find the right split for every attribute in the data. The analysis of packet

sizes from e-mail, ftp, http and print showed packet sizes ranged from 14 for an 802.11b

acknowledgement to 1544 for a data packet with approximately 72 unique sizes in

between. Since the window size used for samples is 11, 31, and 51, the numbers of tests

needed are 869, 2449, and 4029 respectively. Each packet in the collection window is

treated as a separate attribute. Since the values are arranged in order, the tests can be

performed in one pass while the class distributions are updated on the fly and the training

of the network usually takes less than 30 seconds.

 Pruning reduces a decision tree’s size. This makes the model more

comprehensible, and may correct any over-fitting of the model which boosts its

generalization ability. There are two methods of pruning, prepruning and postpruning.

The decision tree algorithm employed in WEKA used postpruning to reduce the size of

the tree model. Trees are usually “pruned” by removing one or more subtrees and

replacing them with leaves. The test used to decide whether or not a branch should be

 57

pruned should be “taken with a large grain of salt” and “does violence to statistical

notions of sampling and confidence limits” [Qui93]. However, the test does frequently

produce good results. In the author’s own words:

When N training cases are covered by a leaf, E of them incorrectly, the
resubstitution error rate for this leaf is E/N. However, we can regard this
somewhat naively as observing E “events” in N trials. If this set of N training
cases could be regarded as a sample (which, of course, it is not), we could ask
what this result tells us about the probability of an event (error) over the
entire population of cases covered by this leaf. The probability of error
cannot be determined exactly, but has itself a (posterior) probability
distribution that is usually summarized by a pair of confidence limits. For a
given confidence level (CF), the upper limit on this probability can be found
from the confidence limits for the binomial distribution. Then, C4.5 simply
equates the predicted error rate at a leaf with this upper limit, on the argument
that the tree has been constructed to minimize the observed error rate.

More detail on the C4.5 decision tree algorithm can be found in [Qui93].

 The pilot studies for the decision tree experiments led to using a boosting

algorithm known as AdaBoost.M1 [Qui96]. Boosting is a technique applicable to many

ML algorithms. It was originally intended for taking relatively weak (slightly better than

random guessing) classifiers and turning them into strong ones. However, the technique

has been applied to decision trees in general, and the C4.5 (and so J48) algorithm in

particular with good results [Qui96]. In general, boosting keeps all training instances per

training cycle, but increases the weight or how important the sample is each time it is

misclassified. In this way, a system is forced to “work harder” to classify those samples

that are more difficult.

 Many of the different settings in WEKA simply relate to the output format of the

data, but some have an impact on the performance of the algorithms and so all the

settings used for this research are included in Appendix B.

 58

4.6 Decision Tree Results

 Unlike neural networks, the decision tree induction algorithm is deterministic

and only required one replication at each window setting (11, 31, and 51). Splitting the

data up into portions for cross-validation purposes is still important though and a four

fold split was performed just as with the neural network data.

 Although decision trees are more comprehensible in nature than neural networks,

the size of the trees for large attribute cases makes them difficult to visualize. The

assumption that part of the reasoning behind the split decisions has to do with the unique

packet sizes present in the different application transmissions is true when looking at a

small portion of an induced decision tree as in Figure 4-3. Since the data has been

normalized by dividing by the MTU (1544), we are actually looking for 976/1544 (the

“leftover” packets for e-mail) or approximately 0.6321. In the small portion of decision

tree shown, the value for this unique packet size is highlighted and the rule for this

particular value shows that about 65 samples of e-mail were correctly classified based on

Figure 4-3 Portion of J48 Induced Decision Tree

 59

it while 4.22 were incorrect. Further analysis of the tree revealed that the unique packet

sizes are exclusively used for the identification of e-mail.

 The same confusion matrices were used to determine the percent of correct

classifications for the decision tree models as with the neural networks. The decision

trees performed much better and took less time to train than the neural networks. The

classification levels for the single replications of the three window experiments are

shown in Table 4-10. The variability among the three different window sizes is much

less than that for the neural networks ranging from 86.4% to 88%. An interesting

similarity in the performance of the two algorithms is that print jobs are the most

correctly classified ranging from 97.6% to 99.8% success. Since there are more unique

packet sizes in print transmissions than any of the others, this result is expected. Looking

Table 4-10 Classification Percentages for All Decision Tree Experiments

X11 X31 X51
EH 0.832 EH 0.663 EH 0.930
EF 0.879 EF 0.934 EF 0.922
EP 0.769 EP 0.866 EP 0.873
FH 0.765 FH 0.797 FH 0.681
FP 0.687 FP 0.723 FP 0.605
HP 0.924 HP 0.941 HP 0.948
FEH 0.995 FEH 0.995 FEH 0.998
FEP 0.838 FEP 0.879 FEP 0.882
PEH 0.902 PEH 0.915 PEH 0.925
PHF 0.822 PHF 0.734 PHF 0.677
EMAIL 0.828 EMAIL 0.908 EMAIL 0.932
FTP 0.900 FTP 0.984 FTP 0.987
HTTP 0.984 HTTP 0.986 HTTP 0.976
PRINT 0.976 PRINT 0.994 PRINT 0.997

OVERALL 0.843 OVERALL 0.859 OVERALL 0.839

at the weighted mean for the systems the performance is 84.3%, 85.9% and 83.9%

respectively. Since the decision tree algorithm is deterministic, no confidence intervals

are required. The first two systems perform as expected (in relation to each other) in that

 60

the second performs better. However, the 51 window system performs worse than both

the 11 and 31 window systems.

 A similarity in the performance of the different algorithms is apparent in the

single data classifications. As expected, the percentage of correct classifications rises

with the number of packets used in the training data except for in the HTTP case. The

difference is not as dramatic as in the neural network system (44.5%, 62.2%, 14.9%), but

the trend is still the same. Unfortunately, yet another similarity between the performance

of the two algorithms is that there are no clear relationships among the multiple data

cases.

4.7 Comparative Analysis

 On 36 out of 42 (85.7%) experiments, the decision tree approach classifies the

samples at a much better rate of up to 85% in some cases. In 26 of those experiments,

decision trees are statistically better with the classification rate falling outside the

confidence interval of the neural network performance. This means that in ten of the

experiments, the decision trees perform better than the average neural network

performance but the value falls within the 90% confidence interval of the NN response.

On the six experiments where the neural network performs better, the maximum

difference is 6% and only three of these cases are statistically significant.

 The decision tree algorithm is a better candidate for an ADS implementation.

Decision trees classify at a higher percentage, train faster, and are more comprehendible

than neural networks. However, it is clear that both ML techniques have successfully

learned their classification tasks when compared to the baseline of 25% for correct

random guessing.

 61

 This does not imply that the methods outlined in this research are ready to

implement in an ADS. There are still problems to be overcome such as how to determine

which of the different cases (single, double, triple) are occurring at any given time on the

network. With the decision trees, it is a fairly simple process to determine if only one

sample is accessing the medium since the other three application levels should account

for less than 10% of the overall classifications. These difficulties occur due to the

differences in training a model on a “flat” file of collected transmissions versus

attempting to classify samples “on the fly”. For example, the decision trees are forced to

make a determination among the four applications for every sample presented to them.

Out of a large number of samples of combined traffic, this method is successful since the

algorithm votes fairly equally among the correct choices. This presents a problem for the

real-time detection of multiple applications via decision trees. For example, if e-mail and

http traffic are combined on the channel, the decision tree will give a classification of one

or the other. It may be the case that the oscillation of the decision tree classification

could act as the input to another layer of programming or ML which could make the

ultimate determination about which applications and how many are accessing the

channel. Perhaps the nature of the neural network output nodes could be useful in

multiple application decisions.

4.8 Analysis of Variance

 Statistical methods are used throughout the analysis of the classification results

obtained and they reveal that there is little difference in system performance among the

different window sizes for each ML technique. An analysis of variance between the two

systems is not necessary since the outcome would be obvious: the choice of algorithm

 62

accounts for nearly all of the variance in performance.

4.9 Summary

 This chapter presents and analyzes the results of this research. Two kinds of

unique packet sizes occur within transmissions of the four applications used, “leftover”

packets and “signature” ones. Decision trees and neural networks use these unique

 packets to achieve correct classification rates that are statistically significant ranging

from 65.8% to 85.9%. The single application classifications perform as expected in

regard to the increase in percent correct corresponding to an increase in window size.

The multiple application classifications achieve statistically significant results. However,

no other clear trends can be observed. Statistically, the choice of window size changes

little of the performance of the algorithms. An ANOVA is not necessary since

confidence levels are used for each result and the major source of variance clearly results

from the choice of algorithm.

.

 63

V. Conclusions and Recommendations

 This chapter summarizes the problem, research contributions, limitations and

recommendations for future research in this area.

5.1 Problem Summary

 As wireless networks become an increasingly common part of our nation’s

infrastructure, we need to evaluate the vulnerabilities of this technology. Wireless

networks are unique in that the channel is not physically secure and typically has lower

data rates and higher error rates when compared to a wired network. There is a major

push toward tougher encryption for wireless networks embodied in such documents as

802.11i. As encryption grows stronger, it becomes less and less likely that packets can be

decrypted in a timely manner. For this reason other techniques for analyzing wireless

network traffic need to be discovered. Such study is of value from both the offensive and

defensive standpoint. In other words, what might our adversaries be learning from our

wireless networks? Conversely, what might we learn from the networks of our

adversaries? Unique characteristics have been shown to exist within such wireless packet

attributes as the packet size and these are used to train ML techniques for the automatic

detection of applications accessing the channel.

5.2 Findings

 This research shows that ML techniques can be applied successfully to the

problem of inferring important information from 802.11b encrypted transmissions. The

overall success of the neural networks and decision trees ranges from 65% to 86% correct

classification of the applications accessing the channel. For the single application case,

the success varies a great deal in the neural networks ranging from an average low of

 64

approximately 15% to a high of 90%. The success of the decision tree algorithm varied

much less and ranged from a low of approximately 83% to a high of 99.8% for the single

application case. In both ML techniques, the print jobs are the most successfully

classified.

 To understand how the ML techniques determined their rules, a thorough analysis

of the packet sizes within the four applications studied is undertaken. This analysis

reveals a number of unique inter-application packet sizes and some “signature” intra-

application packet sizes. Since these signature packets appear in every size of the

applications tested they can be used to identify even small (1-30 KByte) transmissions.

Further, these signature packet sizes tend to mark the beginning and end of transmissions.

For example, the packet size of 108 bytes is unique among all four applications studied

(e-mail, ftp, http, print) and occurred near the end of every ftp. By analyzing

unencrypted versions of the same e-mail transmission, it is revealed that this packet is an

“end of ftp service” packet. Since the hypothesis of this research is that encryption can

not hide all the information in packets, an analysis between the unencrypted and WEP

encrypted transmissions of all four applications is also performed. The results show that

the same unique packet size characteristics do indeed exist in the encrypted versions of

802.11b transmissions, and that the encrypted versions are simply 8 bytes larger which is

due to the encryption overhead. In other words, the 100 byte end of ftp service packet is

108 bytes in the encrypted version. The ML techniques for this research are trained using

the encrypted version of all traffic.

5.3 Limitations

 Since this research is carried out on an ad-hoc 802.11b network, the results

 65

might not apply to an infrastructure where the wireless computers communicate via an

access point to a wired network since the packet sizes could be changed once they are

processed by the access point. However, it is likely that unique packet sizes occur in

most networks where the sizes of the packets vary.

 Another limitation of this research is that only four applications are studied.

Further, only text data is used for the applications. The work likely generalizes to more

applications, but the number would have to be bounded since the number of unique

packet sizes obviously is. In other words, it is possible that several applications will have

similar packet sizes and so confuse any ML technique trying to classify them.

 A third limitation is that the data transformed and classified by the ML techniques

is collected and resides in “flat” files. Identifying the number of applications accessing

the medium at any one time is inherently problematic for the ML techniques. This is true

even when viewing a transmission with a-priori knowledge and with the benefit of

knowing the applications that make up each file of samples. This problem is worsened

when transformed to the real-time application detection scenario.

5.4 Recommendations for Future Research

 One area of future research should include the analysis of more applications to see

if there are unique packets available for classification. Along the same lines, other types

of data should be used in order to ensure that the classification process can handle these.

Perhaps even more detailed classifications are possible with the inclusion of other types

of data. For example, we may learn that a print job is accessing the channel and that the

job includes graphics.

 Future research could also include the eventual production of an ADS. One

 66

possibility for creating such a system is to use the unique intra-application packets with

some sort of finite state automatons (FSA). These FSAs would be responsible for

identifying how many applications were accessing the channel. In a pristine environment

(where only one transmission is occurring) these FSAs could also track the approximate

sizes of application transmissions. By combining FSAs with decision trees (or another

appropriate ML technique) the accuracy of the system would likely be improved.

 Another interesting area for research is the combination of information gained via

the headers with the data gleaned from the packet sizes. For example, if the IP address of

a computer is identified as commonly being associated with http traffic, that computer

can possibly be identified as a web host machine.

 This research relies on unique packet sizes in order to infer information from

transmissions. Other characteristics of packet transmissions should be studied to

determine if they can provide as much information. One such characteristic, signal

strength, could be used to help determine the number of applications accessing the

channel. For example, if the ML technique identified e-mail as the application, but there

were two signal strengths involved then there could be two e-mails on the channel.

Another possibility for future research could involve improved methods for

defeating this type of traffic analysis. In other words, methods need to be developed that

are less costly in terms of performance and overhead so that they will more likely be used

in the field.

 67

Appendix A

Neural Network Results:Window=11, Replication 1
 EMAIL FTP HTTP PRINT Overall %
EH 123 75 6006 858 0.867
EF 118 43 2797 465 0.047
EP 134 70 5085 2242 0.315
FH 571 343 8589 1080 0.843
FP 630 270 8915 2234 0.207
HP 12 22 258 1013 0.973
FEH 711 488 11279 2978 0.807
FEP 894 724 14044 9514 0.442
PEH 150 174 4710 7810 0.986
PHF 595 613 8060 3893 0.954
 Total 0.646

Single Application Confusion

Matrix
 EMAIL FTP HTTP PRINT

EMAIL 11 70 941 284 0.008
FTP 26 72 724 484 0.055

HTTP 47 40 884 335 0.676
PRINT 6 5 251 1044 0.799

 Total 0.384
 Overall 0.634

Neural Network Results:Window=11, Replication 2
 EMAIL FTP HTTP PRINT Overall %
EH 658 206 5343 855 0.849
EF 275 37 2470 641 0.091
EP 486 173 4593 2280 0.367
FH 756 102 7916 1809 0.757
FP 676 91 8309 2973 0.254
HP 17 95 217 976 0.914
FEH 911 363 10432 3750 0.757
FEP 714 642 13174 10646 0.476
PEH 278 333 4335 7898 0.974
PHF 464 460 7371 4866 0.964
 Total 0.647

Single Application Confusion

Matrix
 EMAIL FTP HTTP PRINT

EMAIL 111 198 843 154 0.084
FTP 77 310 631 288 0.237

HTTP 54 50 854 348 0.653
PRINT 8 22 186 1090 0.834

 Total 0.452
 Overall 0.638

 68

Neural Network Results:Window=11, Replication 3
 EMAIL FTP HTTP PRINT Overall %
EH 4151 937 972 1002 0.725
EF 1879 492 465 587 0.692
EP 3410 833 904 2385 0.769
FH 5815 2167 1125 1476 0.311
FP 5872 2235 1331 2610 0.402
HP 137 120 65 983 0.803
FEH 7382 2918 1723 3433 0.777
FEP 8952 3759 2413 10050 0.904
PEH 2996 931 802 8115 0.927
PHF 5025 2640 1282 4213 0.618
 Total 0.711

Single Application Confusion

Matrix
 EMAIL FTP HTTP PRINT

EMAIL 617 317 186 186 0.472
FTP 492 479 69 266 0.366

HTTP 585 177 201 343 0.153
PRINT 122 42 36 1106 0.846

 Total 0.459
 Overall 0.700

Neural Network Results:Window=11, Replication 4
 EMAIL FTP HTTP PRINT Overall %
EH 3875 190 2302 694 0.874
EF 1860 37 1049 477 0.554
EP 3255 148 1946 2183 0.721
FH 6465 120 2827 1171 0.278
FP 6466 84 3081 2418 0.207
HP 140 74 136 955 0.836
FEH 7758 453 4598 2647 0.828
FEP 9425 744 5828 9179 0.768
PEH 3081 276 2033 7452 0.978
PHF 5260 530 3733 3638 0.600
 Total 0.669

Single Application Confusion

Matrix
 EMAIL FTP HTTP PRINT

EMAIL 575 175 399 157 0.440
FTP 525 252 260 269 0.192

HTTP 600 52 386 268 0.295
PRINT 112 8 136 1050 0.803

 Total 0.433
 Overall 0.658

 69

Neural Network Results:Window=31, Replication 1
 EMAIL FTP HTTP PRINT Overall %
EH 3318 111 3254 349 0.934
EF 1422 7 1571 410 0.419
EP 2691 217 2773 1397 0.577
FH 4513 20 5033 996 0.478
FP 4349 48 5301 2331 0.197
HP 214 231 116 724 0.653
FEH 11160 402 898 2976 0.807
FEP 11750 1095 1871 8283 0.918
PEH 3435 815 981 7593 0.936
PHF 7220 556 1133 4240 0.450
 Total 0.679

Single Application Confusion

Matrix
 EMAIL FTP HTTP PRINT

EMAIL 863 276 96 51 0.671
FTP 378 354 428 126 0.275

HTTP 339 38 706 203 0.548
PRINT 56 28 63 1139 0.885

 Total 0.595
 Overall 0.675

Neural Network Results:Window=31, Replication 2
 EMAIL FTP HTTP PRINT Overall %
EH 684 55 5983 310 0.948
EF 224 12 2882 292 0.069
EP 463 100 4794 1721 0.308
FH 431 21 9043 1067 0.858
FP 383 32 9142 2472 0.208
HP 55 58 128 1044 0.912
FEH 704 73 11563 3096 0.799
FEP 629 189 12985 9196 0.435
PEH 313 215 3753 8543 0.983
PHF 369 105 7909 4766 0.971
 Total 0.657

Single Application Confusion

Matrix
 EMAIL FTP HTTP PRINT

EMAIL 206 101 907 72 0.160
FTP 88 208 827 163 0.161

HTTP 16 30 1078 162 0.838
PRINT 1 4 124 1157 0.899

 Total 0.514
 Overall 0.650

 70

Neural Network Results:Window=31, Replication 3
 EMAIL FTP HTTP PRINT Overall %
EH 141 132 6570 189 0.954
EF 7 24 3121 258 0.009
EP 94 172 5244 1568 0.234
FH 20 53 9579 910 0.911
FP 21 60 9819 2129 0.181
HP 74 73 140 998 0.885
FEH 100 150 12472 2714 0.824
FEP 164 411 13996 8428 0.391
PEH 119 277 4020 8408 0.978
PHF 76 226 8559 4288 0.994
 Total 0.649

Single Application Confusion

Matrix
 EMAIL FTP HTTP PRINT

EMAIL 156 78 1017 35 0.121
FTP 248 153 824 61 0.118

HTTP 22 28 1098 138 0.853
PRINT 7 9 124 1146 0.891

 Total 0.496
 Overall 0.642

Neural Network Results:Window=31, Replication 4
 EMAIL FTP HTTP PRINT Overall %
EH 5614 295 857 266 0.920
EF 2489 43 575 303 0.742
EP 4115 384 1010 1569 0.803
FH 7808 181 1586 986 0.167
FP 6886 239 2434 2470 0.225
HP 87 198 80 920 0.778
FEH 8750 440 3184 3060 0.801
FEP 8431 1096 4750 8722 0.793
PEH 2339 731 1688 8066 0.942
PHF 5112 592 2967 4478 0.611
 Total 0.670

Single Application Confusion

Matrix
 EMAIL FTP HTTP PRINT

EMAIL 811 244 192 39 0.630
FTP 594 420 201 71 0.326

HTTP 775 64 321 126 0.249
PRINT 96 68 76 1046 0.813

 Total 0.505
 Overall 0.662

 71

Neural Network Results:Window=51, Replication 1
 EMAIL FTP HTTP PRINT Overall %

EH 4148 611 1961 307 0.869
EF 1813 396 986 195 0.651
EP 2785 1332 1772 1597 0.585
FH 4856 1792 3227 590 0.479
FP 4178 1900 3414 2516 0.367
HP 52 650 50 513 0.445

FEH 5707 2451 3950 3308 0.785
FEP 4314 4584 4895 10141 0.795
PEH 1401 3560 1433 6410 0.721
PHF 2705 2636 3198 4574 0.793

 Total 0.687

EFHP EMAIL FTP HTTP PRINT
EMAIL 779 277 137 73 0.615

FTP 333 641 221 71 0.506
HTTP 268 248 649 101 0.512
PRINT 4 203 32 1027 0.811

 Total 0.611
 Overall 0.684

Neural Network Results:Window=51, Replication 2
 EMAIL FTP HTTP PRINT Overall %

EH 5236 1364 124 304 0.762
EF 2221 862 104 203 0.909
EP 3635 1404 267 2180 0.776
FH 5314 4247 246 658 0.429
FP 4882 3625 693 2809 0.535
HP 67 208 6 984 0.782

FEH 6630 4358 1017 3411 0.778
FEP 5247 5362 1821 11504 0.923
PEH 1592 1640 417 9155 0.871
PHF 3268 3828 1143 4876 0.750

 Total 0.760

EFHP EMAIL FTP HTTP PRINT
EMAIL 900 312 27 27 0.710

FTP 294 870 40 62 0.687
HTTP 497 586 48 135 0.037
PRINT 5 49 7 1205 0.951

 Total 0.596
 Overall 0.753

 72

Neural Network Results:Window=51, Replication 3
 EMAIL FTP HTTP PRINT Overall %
EH 5391 1268 73 296 0.777
EF 2333 811 65 181 0.927
EP 3809 1373 232 2072 0.785
FH 5618 4111 138 598 0.406
FP 5334 3592 491 2592 0.514
HP 70 232 2 961 0.761
FEH 7728 4338 789 3061 0.807
FEP 6148 5498 1497 10791 0.937
PEH 1817 1699 343 8945 0.867
PHF 3837 3915 888 4475 0.707
 Total 0.759

 EMAIL FTP HTTP PRINT
EMAIL 915 302 10 39 0.722

FTP 323 857 12 74 0.676
HTTP 553 560 18 135 0.014
PRINT 7 56 19 1184 0.935

 Total 0.587
 Overall 0.751

Neural Network Results:Window=51, Replication 4
 EMAIL FTP HTTP PRINT Overall %
EH 6033 698 52 245 0.865
EF 2723 411 84 171 0.924
EP 4278 1169 236 1803 0.812
FH 7694 2003 174 594 0.208
FP 6805 2016 613 2575 0.382
HP 77 423 5 760 0.604
FEH 8687 2704 980 3044 0.802
FEP 7115 4628 1794 10397 0.925
PEH 2166 2766 414 7458 0.783
PHF 4600 2945 1075 4495 0.649
 Total 0.709

 EMAIL FTP HTTP PRINT
EMAIL 959 293 1 13 0.757

FTP 600 647 13 6 0.511
HTTP 770 396 42 58 0.033
PRINT 3 91 27 1145 0.904

 Total 0.551
 Overall 0.702

 73

Decision Tree Results:Window=11
 EMAIL FTP HTTP PRINT Overall %

EH 5234 1153 648 32 0.832
EF 1781 1233 402 12 0.879
EP 3801 1060 677 1993 0.769
FH 2481 7270 826 5 0.765
FP 2513 6419 1257 1859 0.687
HP 70 29 156 1049 0.924

FEH 6081 7606 1697 62 0.995
FEP 5420 8293 4059 7401 0.838
PEH 2670 1255 1207 7711 0.902
PHF 2339 6686 2017 2126 0.822

 Total 0.839

EFHP EMAIL FTP HTTP PRINT
EMAIL 1081 170 46 8 0.828

FTP 119 1175 9 2 0.900
HTTP 12 6 1285 2 0.984
PRINT 12 10 9 1274 0.976

 Total 0.922
 Overall 0.843

Decision Tree Results:Window=31
 EMAIL FTP HTTP PRINT Overall %

EH 2019 1150 249 2 0.663
EF 6069 527 429 33 0.934
EP 4369 616 389 2148 0.866
FH 2140 7664 769 0 0.797
FP 2434 6824 894 1887 0.723
HP 54 22 159 1060 0.941

FEH 6081 7606 1697 62 0.995
FEP 6027 8540 3045 7555 0.879
PEH 3089 1081 958 7706 0.915
PHF 3488 6654 1762 1244 0.734

 Total 0.854

EFHP EMAIL FTP HTTP PRINT
EMAIL 1178 99 16 3 0.908

FTP 12 1276 8 0 0.984
HTTP 10 8 1278 0 0.986
PRINT 3 3 1 1299 0.994

 Total 0.968
 Overall 0.859

 74

Decision Tree Results:Window=51
 EMAIL FTP HTTP PRINT Overall %

EH 6139 458 400 30 0.930
EF 2151 977 261 0 0.922
EP 4458 548 402 2083 0.873
FH 3331 6275 857 1 0.681
FP 3652 5633 1088 1635 0.605
HP 37 28 130 1069 0.948

FEH 7515 6186 1697 17 0.998
FEP 7616 7373 2966 7181 0.882
PEH 3285 957 974 7587 0.925
PHF 4232 6110 1696 1090 0.677

 Total 0.833

EFHP EMAIL FTP HTTP PRINT
EMAIL 1179 68 17 1 0.932

FTP 39 1224 2 0 0.967
HTTP 16 14 1235 0 0.976
PRINT 3 0 0 1262 0.997

 Total 0.968
 Overall 0.839

 75

Appendix B

Settings for WEKA Decision Tree Algorithm J48 and AdaBoost.M1

 AdaBoostM1
 Classifier J48
 debug FALSE
 maxIterations 10
 useResampling FALSE
 weightThreshold 100

 J48
 binarySplits FALSE
 confidenceFactor 0.25
 minNumObj 2
 numFolds 3
 reducedErrorPruning FALSE
 saveInstandeData FALSE
 subtreeRaising TRUE
 unpruned FALSE
 useLaplace FALSE

 76

References

[P802.11] “IEEE Standard for Wireless LAN Medium Access Control and Physical
Layer Specification,” P802.11, Institute of Electrical and Electronics
Engineers, November 1997.

[And98] Andren C., “IEEE 802.11 Wireless LAN: can we use it for multimedia,”

IEEE Multimedia, pp. 84-89, 1998.

[And01] Anderson Ross. Security Engineering: A Guide to Building Dependable

Distributed Systems, John Wiley & Sons, Inc. New York, NY, 2001.

[Bel97] Bellovin, S., “Probable Plaintext Cryptanalysis of the IP Security

Protocols,” Proceedings of the Symposium on Network and Distributed
System Security, San Diego, CA, pp. 155-160, 1997.

[BGS00] Back, Adam, Goldberg, Ian, Shostack, Adam “Freedom 2.0 Security

Issues and Analysis,” Zero-Knowledge Systems, Inc., November, 2000.

[Bil02] Bilmes, Jeff, “What HMMs Can Do,” University of Washington School of

Engineering Technical Report-UWEE, January 2002.

[BuC93] Butler, C., Caudill, M. Understanding Neural Networks. Cambridge,

MA, The MIT Press, 1993.

[ChA99] Cheng, H., Avnur, R., “Traffic Analysis of SSL Encrypted Web

Browsing,” Berkeley School of Computer Science, Unpublished Report,
2000.

[CrS97] Craven, S., Shavlik, J., “Using Neural Networks for Data Mining,” Future

Generation Computer Systems, 13(2-3):211-229, 1997.

[Edd00] Eddy, Sean, “Profile Hidden Markov Models,” Bioinformatics 14: 755-

763, 1998.

[Ent02] Enterasys Networks, 802.11 Wireless Networking Guide, Rochester, NH,

2002.

[FHB98] Fischer, Igor, Hennecke, Fabian, Bannes, Christian, Zell, Andreas. JNNS,

Java Neural Network Simulator, User Manual. University of Stuttgart,
1998.

[FKK96] Fasbender, A., Kesdogan, D., Kubitz, O., “Variable and Scalable Security:

Protection of Location Information in Mobile IP,” IEEE 46th Vehicular
Technology Conference, Atlanta, GA, March 1996.

 77

 [Gei02] Geier, Jim. Wireless Lans. Indianapolis, Indiana, Sams, 2002.

[GFX01] Guan Yong et al., “Net Camo: Camouflaging Network Traffic for QoS-

Guaranteed Mission Critical Applications,” IEEE Transactions on
Systems, Man, and Cybernetics-Part A: Systems and Humans, Vol. 31,
No. 4, July 2001.

[GLX99] Guan Yong et al., “Preventing Traffic Analysis for Real-Time

Communication Networks,” IEEE Military Communications, 1:744-750,
November 1999.

[Gri02] Grimm, Brian, “Wi-Fi Protected Access,” White Paper, Wi-Fi Alliance,

2002.

[Gun00] Gunsch, Trace, “Emerging Technology Future View Convergence,” U.S.

Army Information Systems Engineering Command, Technology
Integration Center Report, March 2000.

[HTF02] Hastie, T., Tibshirani, R., Friedman, Jerome. The Elements of Statistical

Learning. New York, NY, Springer-Verlag, 2001.

[JDM00] Jain, A., Duin, R., Mao, J., “Statistical Pattern Recognition: A Review,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22,
No. 1, pp. 4-37, January, 2000.

[JVZ01] Jiang, Shu, Vaidya, Nitin, Zhao, Wei, “A Dynamic Mix Method for

Wireless Ad Hoc Networks,” MILCOM Proceedings, McLean, VA,
2:873-877, October, 2001.

[KaV94] Karr, C. L., Vann, P. A., “Inferring Difficult to Measure Parameters Using

Neural Networks and Genetic Algorithms,” Artificial Neural Networks in
Engineering Conference, St. Louis, MO, 4:313-319. 1994

[KeA98] Kent, S., Atkinson, R., “RFC 2406 IP Encapsulating Security Payload,”

The Internet Engineering Task Force, RFC-2406, November 1998.

[Lou95] Lou Hui-Ling, “Implementing the Viterbi Algorithm,” IEEE Signal

Processing Magazine, 1995.

[Mar01] Marchette, David. Computer Intrusion Detection and Network

Monitoring: A Statistical Viewpoint, New York, NY, Springer-Verlag,
2001.

[Mit97] Mitchell, T. M. Machine Learning, New York, NY, McGraw Hill, 1997.

 78

[MTV97] Mannila, Heikki, Toivonen, Hannu, Verkamo, Inkeri, “Discovery of
Frequent Episodes in Event Sequences,” Data Mining and Knowledge
Discovery, Vol. 1, No. 3, pp. 259-289, 1997.

[Mul02] Mullins, Justin, “Making Unbreakable Code,” IEEE Spectrum, pp. 40-45,

May 2002.

[Qui86] Quinlan, R., “Induction of Decision Trees,” Machine Learning, 1, pp. 81-

106, 1986.

[Qui93] Quinlan, R. Programs for Machine Learning: C4.5, San Mateo, CA,

Kaufmann Publishers, 1993.

[Qui96] Quinlan, R., “Bagging, Boosting, and C4.5,” Proceedings of the National

Conference on Artificial Intelligence (AAAI-96), Portland, OR, pp. 725-
730, 1996.

[Rab89] Rabiner, Lawrence, “A Tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition,” Proceedings of the IEEE, February
1989.

[RSG98] Reed, M., Syverson, P., Goldschlag, D., “Anonymous Connections and

Onion Routing,” IEEE Journal on Selected Areas in Communications,
Vol. 16, No. 4, pp. 482-494, May 1998.

[SWT01] Song, Dawn, Wagner, David, Tian, Xuqing, “Timing Analysis of

Keystrokes and Timing Attacks on SSH,” Proceedings of the 10th USENIX
Security Symposium, Washington D.C., 2001.

[WiF00] Witten, I., Frank, E. Data Mining: Practical Machine Learning Tools

and Techniques with Java Implementations, San Francisco, CA, Morgan
Kaufmann, 2000.

[WoV91] Newman-Wolfe, R. E., Venkatraman, Balaji, “High Level Prevention of

Traffic Analysis,” Seventh Annual Computer Security and Applications
Conference, San Antonio, TX, December 1991.

[WoV92] Newman-Wolfe, R. E., Venkatraman, Balaji, “Performance Analysis of a

Method for High Level Prevention of Traffic Analysis,” Eighth Annual
Computer Security and Applications Conference, San Antonio, TX,
December 1992.

[WoV93] Newman-Wolfe, R. E., Venkatraman, Balaji, “Transmission Schedules to

Prevent Traffic Analysis,” Ninth Annual Computer Security and
Applications Conference, San Antonio, TX, December 1993.

 79

[Zel94] Zell, A. et al. SNNS, Stuttgart Neural Network Simulator, User Manual.
University of Stuttgart, 1994.

 80

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information,
including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

23-03-2004
2. REPORT TYPE

Master’s Thesis

3. DATES COVERED (From – To)
Apr 2003 – Mar 2004

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

MACHINE LEARNING TECHNIQUES FOR CHARACTERIZING IEEE
802.11b ENCRYPTED DATA STREAMS

 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Henson, Michael, J., Second Lieutenant, USAF

 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCS/ENG/04-08

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 National Security Agency
 Attn: Mr. William Kroah NSA/R5
 9800 Savage Road Comm: (301) 688-0348
 Ft. George G. Meade, MD 20755-6799 e-mail: wtk@afterlife.ncsc.mil

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
 As wireless networks become an increasingly common part of the infrastructure in industrialized nations, the vulnerabilities
of this technology need to be evaluated. Even though there have been major advancements in encryption technology, security
protocols and packet header obfuscation techniques, other distinguishing characteristics do exist in wireless network traffic.
These characteristics include packet size, signal strength, channel utilization and others. Using these characteristics, windows
of size 11, 31, and 51 packets are collected and machine learning (ML) techniques are trained to classify applications accessing
the 802.11b wireless channel. The four applications used for this study included E-Mail, FTP, HTTP, and Print. Using neural
networks and decision trees, the overall success (correct identification of applications) of the ML systems ranged from a low
average of 65.8% for neural networks to a high of 85.9% for decision trees. These averages are a result of all classification
attempts including the case where only one application is accessing the medium and also the unique combinations of two and
three different applications.

15. SUBJECT TERMS
 Artificial Intelligence, Computer Networks, Data Processing, Wireless Communications, Local Area Networks, Information
Security

16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Rusty O. Baldwin, Maj, USAF (ENG)

a. REPOR
T

U

b. ABSTRAC
T

U

c. THIS
PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

92
19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636, ext 4612; e-mail: rusty.baldwin@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

